SUMMARYPlants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdanerelated diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical-modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane-related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon-like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.
Wheat (Triticum aestivum) and rice (Oryza sativa) are two of the most agriculturally important cereal crop plants. Rice is known to produce numerous diterpenoid natural products that serve as phytoalexins and/or allelochemicals. Specifically, these are labdane-related diterpenoids, derived from a characteristic labdadienyl/copalyl diphosphate (CPP), whose biosynthetic relationship to gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice (OsKSL). Here we report biochemical characterization of a similarly expansive family of KSL from wheat (the TaKSLs). In particular, beyond ent-kaurene synthases (KS), wheat also contains several biochemically diversified KSLs. These react either with the ent-CPP intermediate common to gibberellin biosynthesis or with the normal stereoisomer of CPP that also is found in wheat (as demonstrated by the accompanying description of wheat CPP synthases). Comparison with a barley (Hordeum vulgare) KS indicates conservation of monocot KS, with early and continued expansion and functional diversification of KSLs in at least the small grain cereals. In addition, some of the TaKSLs that utilize normal CPP also will react with syn-CPP, echoing previous findings with the OsKSL family, with such enzymatic promiscuity/plasticity providing insight into the continuing evolution of diterpenoid metabolism in the cereal crop plant family, as well as more generally, which is discussed here.
Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals – specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g., the ent-CPP of gibberellin phytohormone biosynthesis). Similar to rice, wheat encodes a number of CPP synthases (CPS), and the three CPS characterized to date (TaCPS1,2,&3) all have been suggested to produce ent-CPP. However, several of the downstream diterpene synthases will only react with CPP intermediate of normal or syn, but not ent, stereochemistry, as described in the accompanying report. Investigation of additional CPS did not resolve this issue, as the only other functional synthase (TaCPS4) also produced ent-CPP. Chiral product characterization of all the TaCPS then revealed that TaCPS2 uniquely produces normal, rather than ent-, CPP; thus, providing a suitable substrate source for the downstream diterpene synthases. Notably, TaCPS2 is most homologous to the similarly stereochemically differentiated syn-CPP synthase from rice (OsCPS4), while the non-inducible TaCPS3 and TaCPS4 cluster with the rice OsCPS1 required for gibberellin phytohormone biosynthesis, as well as with a barley (Hordeum vulgare) CPS (HvCPS1) that also is characterized here as similarly producing ent-CPP. These results suggest that diversification of labdane-related diterpenoid metabolism beyond the ancestral gibberellins occurred early in cereal evolution, and included the type of stereochemical variation demonstrated here.
A variety of labdane-related diterpenoids, including phytocassanes, oryzalexins and momilactones, were identified as phytoalexins in rice (Oryza sativa L.). Momilactone B was also isolated as an allelochemical exuded from rice roots. The biosynthetic genes of these phytoalexins have been identified, including six labdane-related diterpene cyclase genes such as OsCPS2, OsCPS4, OsKSL4, OsKSL7, OsKSL8 and OsKSL10. Here we identified an OsCPS4 knockdown mutant, cps4-tos, by screening Tos17 mutant lines using polymerase chain reaction. OsCPS4 encodes a syn-copalyl diphosphate synthase responsible for momilactones and oryzalexin S biosynthesis. Because Tos17 was inserted into the third intron of OsCPS4, the mature OsCPS4 mRNA was detected in the cps4-tos mutant as well as the wild type. Nevertheless, mature OsCPS4 transcript levels in the cps4-tos mutant were about one sixth those in the wild type. The cps4-tos mutant was more susceptible to rice blast fungus than the wild type, possibly due to lower levels of momilactones and oryzalexin S in the mutant. Moreover, co-cultivation experiments suggested that the allelopathic effect of cps4-tos against some kinds of lowland weeds was significantly lower than that of the wild type, probably because of lower momilactone content exuded from cps4-tos roots. A reverse-genetic strategy using the cps4-tos mutant showed the possible roles of momilactones not only as phytoalexins but also as allelopathic substances.
HighlightExpression of the diterpene synthase gene for gibberellin biosynthesis occurs in tissues different from those in which its isoform for phytoalexin biosynthesis is expressed, reflecting their distinct biological roles in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.