An enzymatic system for poly g-glutamate (PGA) synthesis in Bacillus subtilis, the PgsBCA system, was investigated. The gene-disruption experiment showed that the enzymatic system was the sole machinery of PGA synthesis in B. subtilis. We succeeded in achieving the enzymatic synthesis of elongated PGAs with the cell membrane of the Escherichia coli clone producing PgsBCA in the presence of ATP and D-glutamate. The enzyme preparation solubilized from the membrane with 8 mM Chaps catalyzed ADPforming ATP hydrolysis only in the presence of glutamate; the D-enantiomer was the best cosubstrate, followed by the L-enantiomer. Each component of the system, PgsB, PgsC, and PgsA, was translated in vitro and the glutamatedependent ATPase reaction was kinetically analyzed. The PGA synthetase complex, PgsBCA, was suggested to be an atypical amide ligase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.