Six guanidine functionalized aliphatic biodegradable polycarbonates with varying molecular weights and charge densities were synthesized via postsynthesis modification of alkyne containing polycarbonates using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry. The concept of passive diluting group was to modify the cationic charge density of the polycarbonate without changing its hydrophilicity. Within the molecular weight range from 8000 to 30000 g mol, these guanidine polycarbonates exhibited broad-spectrum biocidal activity with low toxicity to red blood cells (RBCs). The lowest molecular weight homopolymer sample (PG-8k-100) showed the best antimicrobial activity (MIC = 40 μg/mL against Escherichia coli and MIC = 20 μg/mL against Staphylococcus epidermidis) and least RBC toxicity (0.6% hemolysis at MIC). Within the three guanidine charge densities from 20% to 70%, the low to medium dilution samples (PG-8k-7030 and PG-8k-5050) had no obvious loss in antimicrobial activities compared to the nondiluted control sample PG-8k-100. However, upon further dilution, PG-8k-2080 gave the lowest antimicrobial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.