The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program [1][2][3][4][5][6][7] . The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) [8][9][10] and cellular auxin transport [11][12][13][14][15] . We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes.Prominent auxin carriers with fundamental importance during plant development are PIN-FORMED (PIN) proteins [1][2][3]6,9,15 . PIN1-type auxin carriers regulate the directional intercellular auxin transport at the plasma membrane. In contrast, atypical family member PIN5 regulates intracellular auxin compartmentalization into the lumen of the endoplasmic reticulum and its role in auxin homeostasis was recently identified 15,16 . PIN proteins have a predicted central hydrophilic loop, flanked at each side by five transmembrane domains. We screened in silico for novel PIN-like putative carrier proteins with a predicted topology similar to PIN proteins ( Fig. 1a and Supplementary Fig. 2) and identified a protein family of seven members (Fig. 1b) in Arabidopsis thaliana, which we designated as the PILS proteins. In contrast to the similarities in the predicted protein topology, PIN and PILS proteins do not show pronounced protein sequence identity (10-18%), which limits the identification of PILS proteins by conventional, reciprocal basic local alignment search tool (BLAST) approaches. However, the distinct PIN and PILS protein families contain both the InterPro auxin carrier domain which is an insilico-defined domain, aiming to predict auxin transport function (http://www.ebi.ac.uk/panda/InterPro.html). The PILS putative carrier family is conserved throughout the whole plant lineage, including unicellular algae (such as Ostreococcus tauri and Chlamydomonas reinhardtii) (Supplementary Fig. 3) where PIN proteins are absent 16 , indicating that PILS proteins are evolutionarily older.PILS genes are broadly expressed in various tissues (Fig. 1c) and PILS2-PILS7 were transcriptionally upregulated by auxin application in wild-type seedlings (Fig. 1d-f and Supplementary Fig. 4), indicating a role in auxin-dependent processes. To investigate the potential function of the putative PILS auxi...
The phytohormone auxin induces or represses growth depending on its concentration and the underlying tissue type. However, it remains unknown how auxin signalling is modulated to allow tissues transiting between repression and promotion of growth. Here we used apical hook development as a model for growth transitions in plants. A PIN-FORMED (PIN)-dependent intercellular auxin transport module defines an auxin maximum that is causal for growth repression during the formation of the apical hook. Our data illustrates that growth transition for apical hook opening is largely independent of this PIN module, but requires the PIN-LIKES (PILS) putative auxin carriers at the endoplasmic reticulum. PILS proteins reduce nuclear auxin signalling in the apical hook, leading to the de-repression of growth and the onset of hook opening. We also show that the phytochrome (phy) B-reliant light-signalling pathway directly regulates PILS gene activity, thereby enabling light perception to repress nuclear auxin signalling and to control growth. We propose a novel mechanism, in which PILS proteins allow external signals to alter tissue sensitivity to auxin, defining differential growth rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.