(1) Background: The acidosis of the tumor micro-environment may have profound impact on cancer progression and on the efficacy of treatments. In the present study, we evaluated the impact of a treatment with UK-5099, a mitochondrial pyruvate carrier (MPC) inhibitor on tumor extracellular pH (pHe); (2) Methods: glucose consumption, lactate secretion and extracellular acidification rate (ECAR) were measured in vitro after exposure of cervix cancer SiHa cells and breast cancer 4T1 cells to UK-5099 (10 µM). Mice bearing the 4T1 tumor model were treated daily during four days with UK-5099 (3 mg/kg). The pHe was evaluated in vivo using either chemical exchange saturation transfer (CEST)-MRI with iopamidol as pHe reporter probe or 31P-NMR spectroscopy with 3-aminopropylphosphonate (3-APP). MR protocols were applied before and after 4 days of treatment; (3) Results: glucose consumption, lactate release and ECAR were increased in both cell lines after UK-5099 exposure. CEST-MRI showed a significant decrease in tumor pHe of 0.22 units in UK-5099-treated mice while there was no change over time for mice treated with the vehicle. Parametric images showed a large heterogeneity in response with 16% of voxels shifting to pHe values under 7.0. In contrast, 31P-NMR spectroscopy was unable to detect any significant variation in pHe; (4) Conclusions: MPC inhibition led to a moderate acidification of the extracellular medium in vivo. CEST-MRI provided high resolution parametric images (0.44 µL/voxel) of pHe highlighting the heterogeneity of response within the tumor when exposed to UK-5099.
Extracellular acidification has been shown to be an important characteristic of invasive tumors, as it promotes invasion and migration but also resistance to treatments. Targeting transporters involved in the regulation of tumor pH constitutes a promising anti-tumor approach, as it would disrupt cellular pH homeostasis and negatively impact tumor growth. In this study, we evaluated the impact of syrosingopine, an inhibitor of MCT1 and MCT4, as a modulator of tumor metabolism and extracellular acidification in human breast cancer (MDA-MB-231) and pharyngeal squamous cell carcinoma (FaDu) cell models. In both models in vitro, we observed that exposure to syrosingopine led to a decrease in the extracellular acidification rate, intracellular pH, glucose consumption, lactate secretion and tumor cell proliferation with an increase in the number of late apoptotic/necrotic cells. However, in vivo experiments using the MDA-MB-231 model treated with a daily injection of syrosingopine did not reveal any significant change in extracellular pH (pHe) (as measured using CEST-MRI) or primary tumor growth. Overall, our study suggests that targeting MCT could lead to profound changes in tumor cell metabolism and proliferation, and it warrants further research to identify candidates without off-target effects.
The novel neuropsychotropic agent milacemide hydrochloride (2-n-pentylaminoacetamide HCl) is a highly selective substrate of the B form of monoamine oxidase (EC 1.4.3.4; MAO). Under the in vitro conditions used in the present study, milacemide acts as an enzyme-activated, partially reversible inhibitor of MAO-B. A reversible inhibition of MAO-A activity is also observed at high concentrations. The inhibitory activity of milacemide is significantly greater for MAO-B. In vivo, after single or repeated oral administration, a specific inhibition of MAO-B is apparent in brain and liver, with a lack of inhibition of the MAO-A activity. In contrast to the irreversible inhibitory action of L-deprenyl, the recovery of MAO-B activity in vivo after milacemide administration is significantly faster, a result suggesting that it is a partially reversible inhibitor. The selective inhibitory effect of milacemide for MAO-B in vivo is confirmed by its potentiation of phenylethylamine-induced stereotyped behavior, whereas vasopressor responses to tyramine were not affected. These observations suggest that milacemide could enhance dopaminergic activity in the brain and could be used as therapy for Parkinson's disease in association with L-3,4-dihydroxyphenylalanine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.