Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.
During the COVID-19 pandemic, an at-home enzyme assay was developed for a biochemistry laboratory course at Arizona State University. The experiment was designed to use items that could be easily obtained and safe to use. The experiment focused on the analysis of salivary amylase using starch from food as a substrate, black tea as an inhibitor, and tincture of iodine to quantify the amount of starch present. In this article, we describe the design of the experiment and an analysis of the student performance with specific mention of the common problems that the students experienced. While this experiment was specifically designed as an at-home experiment, it could easily be adapted to use in a typical undergraduate biochemistry laboratory.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Adenovirus derived vectors, based on chimpanzee adenovirus Y25 (ChAdOx1) and human adenovirus type 26 are proving critical in combating the 2019 SARS-CoV-2 pandemic. Following emergency use authorization, scale up in vaccine administration has inevitably revealed vaccine related adverse effects; too rare to observe even in large Phase-III clinical trials. These include vaccine-induced thrombotic thrombocytopenia (VITT), an ultra-rare adverse event in which patients develop life-threatening blood clots 5-24 days following vaccination. To investigate vector-host interactions of ChAdOx1 underpinning VITT we solved the structure of the ChAdOx1 capsid by CryoEM, and the structure of the primary receptor tropism determining fiber-knob protein by crystallography. These structural insights have enabled us to unravel key protein interactions involved in ChAdOx1 cell entry and a possible means by which it may generate misplaced immunity to platelet factor 4 (PF4), a protein involved in coagulation. We use in vitro cell binding assays to show that the fiber-knob protein uses coxsackie and adenovirus receptor (CAR) as a high affinity binding partner, while it does not form a stable interface with CD46. Computational simulations identified a putative mechanism by which the ChAdOx1 capsid interacts with PF4 by binding in the spaces between hexon proteins, with downstream implications for the causes of VITT.
The photochemical reaction center (RC) features a dimeric architecture for charge separation across the membrane. In green sulfur bacteria (GSB), the trimeric Fenna-Matthews-Olson (FMO) complex mediates the transfer of light energy from the chlorosome antenna complex to the RC. Here we determine the structure of the photosynthetic supercomplex from the GSB Chlorobaculum tepidum using single-particle cryogenic electron microscopy (cryo-EM) and identify the cytochrome c subunit (PscC), two accessory protein subunits (PscE and PscF), a second FMO trimeric complex, and a linker pigment between FMO and the RC core. The protein subunits that are assembled with the symmetric RC core generate an asymmetric photosynthetic supercomplex. One linker bacteriochlorophyll (BChl) is located in one of the two FMO-PscA interfaces, leading to differential efficiencies of the two energy transfer branches. The two FMO trimeric complexes establish two different binding interfaces with the RC cytoplasmic surface, driven by the associated accessory subunits. This structure of the GSB photosynthetic supercomplex provides mechanistic insight into the light excitation energy transfer routes and a possible evolutionary transition intermediate of the bacterial photosynthetic supercomplex from the primitive homodimeric RC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.