Better understanding the transcriptomic response produced by a compound perturbing its targets can shed light on the underlying biological processes regulated by the compound. However, establishing the relationship between the induced transcriptomic response and the target of a compound is non-trivial, partly because targets are rarely differentially expressed. Thus, connecting both modalities requires orthogonal information (e.g., pathway or functional information). Here, we present a comprehensive study aimed at exploring this relationship by leveraging thousands of transcriptomic experiments and target data for over 2,000 compounds. Firstly, we confirmed that compound-target information does not correlate as expected with the transcriptomic signatures induced by a compound. However, we demonstrate how the concordance between both modalities can be increased by connecting pathway and target information. Additionally, we investigated whether compounds that target the same proteins induce a similar transcriptomic response and conversely, whether compounds with similar transcriptomic responses share the same target proteins. While our findings suggest that this is generally not the case, we did observe that compounds with similar transcriptomic profiles are more likely to share at least one protein target, as well as common therapeutic applications. Lastly, we present a case scenario on a few compound pairs with high similarity to demonstrate how the relationship between both modalities can be exploited for mechanism of action deconvolution.
Better understanding the transcriptomic response produced by a compound perturbing its targets can shed light on the underlying biological processes regulated by the compound. However, establishing the relationship between the induced transcriptomic response and the target of a compound is non-trivial, partly because targets are rarely differentially expressed. Therefore, connecting both modalities requires orthogonal information (e.g., pathway or functional information). Here, we present a comprehensive study aimed at exploring this relationship by leveraging thousands of transcriptomic experiments and target data for over 2000 compounds. Firstly, we confirm that compound-target information does not correlate as expected with the transcriptomic signatures induced by a compound. However, we reveal how the concordance between both modalities increases by connecting pathway and target information. Additionally, we investigate whether compounds that target the same proteins induce a similar transcriptomic response and conversely, whether compounds with similar transcriptomic responses share the same target proteins. While our findings suggest that this is generally not the case, we did observe that compounds with similar transcriptomic profiles are more likely to share at least one protein target and common therapeutic applications. Finally, we demonstrate how to exploit the relationship between both modalities for mechanism of action deconvolution by presenting a case scenario involving a few compound pairs with high similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.