Psychogenic non-epileptic seizures (PNES) may resemble epileptic seizures but are not caused by epileptic activity. However, the analysis of electroencephalogram (EEG) signals with entropy algorithms could help identify patterns that differentiate PNES and epilepsy. Furthermore, the use of machine learning could reduce the current diagnosis costs by automating classification. The current study extracted the approximate sample, spectral, singular value decomposition, and Renyi entropies from interictal EEGs and electrocardiograms (ECG)s of 48 PNES and 29 epilepsy subjects in the broad, delta, theta, alpha, beta, and gamma frequency bands. Each feature-band pair was classified by a support vector machine (SVM), k-nearest neighbour (kNN), random forest (RF), and gradient boosting machine (GBM). In most cases, the broad band returned higher accuracy, gamma returned the lowest, and combining the six bands together improved classifier performance. The Renyi entropy was the best feature and returned high accuracy in every band. The highest balanced accuracy, 95.03%, was obtained by the kNN with Renyi entropy and combining all bands except broad. This analysis showed that entropy measures can differentiate between interictal PNES and epilepsy with high accuracy, and improved performances indicate that combining bands is an effective improvement for diagnosing PNES from EEGs and ECGs.
Psychogenic non-epileptic seizures (PNES) are attacks that resemble epilepsy but are not associated with epileptic brain activity and are regularly misdiagnosed. The current gold standard method of diagnosis is expensive and complex. Electroencephalogram (EEG) analysis with machine learning could improve this.A k-nearest neighbours (kNN) and support vector machine (SVM) were used to classify EEG connectivity measures from 48 patients with PNES and 29 patients with epilepsy. The synchronisation method -correlation or coherence -and the binarisation threshold were defined through experimentation. Ten network parameters were extracted from the synchronisation matrix. The broad, delta, theta, alpha, beta, gamma, and combined 'all' frequency bands were compared along with three feature selection methods: the full feature set (no selection), light gradient boosting machine (LGBM) and k-Best.Coherence was the highest performing synchronisation method and 0.6 was the best coherence threshold. The highest balanced accuracy was 89.74%, produced by combining all six frequency bands and selecting features with LGBM, classified by the SVM. This method returned a comparatively high accuracy but at a high computation cost. Future research should focus on identifying specific frequency bands and network parameters to reduce this cost.Clinical relevance -This study found that EEG connectivity and machine learning methods can be used to differentiate PNES from epilepsy using interictal recordings to a high accuracy. Thus, this method could be an effective tool in assisting clinicians in PNES diagnosis without a video-EEG recording of a habitual seizure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.