Generalist parasites can strongly influence interactions between native and invasive species. Host competence can be used to predict how an invasive species will affect community disease dynamics; the addition of a highly competent, invasive host is predicted to increase disease. However, densities of invasive and native species can also influence the impacts of invasive species on community disease dynamics. We examined whether information on host competence alone could be used to accurately predict the effects of an invasive host on disease in native hosts. We first characterized the relative competence of an invasive species and a native host species to a native parasite. Next, we manipulated species composition in mesocosms and found that host competence results did not accurately predict community dynamics. While the invasive host was more competent than the native, the presence of the native (lower competence) host increased disease in the invasive (higher competence) host. To identify potential mechanisms driving these patterns, we analyzed a two-host, one-parasite model parameterized for our system. Our results demonstrate that patterns of disease were primarily driven by relative population densities, mediated by asymmetry in intra- and interspecific competition. Thus, information on host competence alone may not accurately predict how an invasive species will influence disease in native species.
Myrmecochory, a type of ant-mediated seed dispersal, is a diffuse, widespread mutualism in which both partners are purported to benefit from the services or rewards of the other. However, ant benefits in this interaction are conflicted and understudied, especially in the context of microbial third parties. Here, we investigate the effect of a myrmecochore plant-produced antimicrobial chemical (sanguinarine) on the growth of a common entomopathogenic fungus (Beauveria bassiana). We then explore whether sanguinarine, through its effect on entomopathogen growth, might influence ant survival and foraging behavior. At high concentrations, sanguinarine increased the growth of B. bassiana, but fungal growth was not affected at concentrations of sanguinarine near natural levels produced in seeds. When ant colonies were exposed to B. bassiana, survival was not affected by a sanguinarine-supplemented diet. Furthermore, ant foraging patterns (preference for or avoidance of food items with sanguinarine) did not change when ants were exposed to the entomopathogen. Though sanguinarine promotes the growth of an entomopathogen at higher concentrations, which might pose an additional risk for ants in myrmecochory, we assert that social immune behavioral defenses (such as grooming or redispersal of seeds after elaiosome Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aamterms-v1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.