Background: The addition of regional nodal radiation (RNI) to whole breast irradiation for high risk breast cancer improves metastases free survival and new data suggests it contributes additional benefit to overall survival. Deep inspiration breath hold (DIBH) has been shown to reduce cardiac and pulmonary dose in the context of left-sided disease treated with or without RNI, yet few studies have investigated its utility for right-breast cancer. This study investigates the potential advantages of DIBH in local and locoregional radiotherapy for right-sided breast cancer. Methods: Free-breathing (FB) and DIBH computed tomography datasets were obtained from twenty patients who previously underwent radiotherapy for left-sided breast cancer. Ten patients were retrospectively planned for whole right breast only irradiation and ten patients were planned for irradiation to the whole breast plus ipsilateral supraclavicular (SC) nodes, with and without irradiation of the ipsilateral internal mammary nodes (IMN). Dose-volume metrics for the clinical target volume, lungs, heart, left anterior descending artery, right coronary artery (RCA) and liver were recorded. Differences between FB and DIBH plans were analysed using Wilcoxon signed-rank tests, with P < 0.05 considered statistically significant. Results: DIBH increased the average total lung volume compared to FB in both breast only and breast plus RNI cohorts (P = 0.001). For the breast only group, there was no significant improvement in any ipsilateral lung dosevolume metric between FB and DIBH. However, for the breast plus RNI group, there was an improvement in ipsilateral lung mean dose (18.9 ± 3.2 Gy to 15.9 ± 2.3 Gy, P = 0.002) and V20Gy (45.3 ± 13.3% to 32.9 ± 9.4%, P = 0.002). In addition, DIBH significantly reduced the maximum dose to the RCA for RNI (11.6 ± 7.2 Gy to 5.6 ± 2.9 Gy, P = 0.03). Significant reductions in the liver V20Gy and maximum dose were observed in all cohorts during DIBH compared to FB. Conclusions: DIBH is a promising approach for right-breast radiotherapy with considerable sparing of normal tissue, particularly when the ipsilateral IMNs are also irradiated.
Background Dose-escalation to above 80 Gy during external beam radiotherapy for localised prostate cancer leads to improved oncological outcomes but also substantially increased rectal toxicity. The aim of this study was to demonstrate the safety and efficacy of escalating the dose to 82 Gy following insertion of a peri-rectal hydrogel spacer (HS) prior to radiotherapy. Methods This was a single arm, open-label, prospective study of men with localised prostate cancer who were prescribed a course of intensity modulated radiotherapy escalated to 82 Gy in 2 Gy fractions following insertion of the SpaceOAR™ HS (Boston Scientific, Marlborough, MA). Patients were prescribed a standard course of 78 Gy in 2 Gy fractions where rectal dose constraints could not be met for the 82 Gy plan. The co-primary endpoints were the rate of grade 3 gastrointestinal (GI) and genitourinary (GU) adverse events (CTCAE, v4), and patient-reported quality of life (QoL) (EORTC QLQ-C30 and PR25 modules), up to 37.5 months post-treatment. Results Seventy patients received treatment on the study, with 64 (91.4%) receiving an 82 Gy treatment course. The median follow-up time post-treatment was 37.4 months. The rate of radiotherapy-related grade 3 GI and GU adverse events was 0% and 2.9%, respectively. There were 2 (2.9%) grade 3 adverse events related to insertion of the HS. Only small and transient declines in QoL were observed; there was no clinically or statistically significant decline in QoL beyond 13.5 months and up to 37.5 months post-treatment, compared to baseline. No late RTOG-defined grade ≥ 2 GI toxicity was observed, with no GI toxicity observed in any patient at 37.5 months post-treatment. Nine (12.9%) patients met criteria for biochemical failure within the follow-up period. Conclusions Dose-escalation to 82 Gy, facilitated by use of a hydrogel spacer, is safe and feasible, with minimal toxicity up to 37.5 months post-treatment when compared to rates of rectal toxicity in previous dose-escalation trials up to 80 Gy. Trials with longer follow-up of oncological and functional outcomes are required to robustly demonstrate a sustained widening of the therapeutic window. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12621000056897, 22/01/2021. Retrospectively registered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.