Aim: The pharmacists are identified as one of the best positioned health professionals to lead intercollaborative efforts in tailoring medication based on pharmacogenetic information. As pharmacotherapy specialists, they can take on a prominent role in ordering and interpreting pharmacogenetic test results and then guiding optimal drug selection and dose based on those results. Participants & methods: To assess the readiness of pharmacists and trainees in the province of Quebec to assume this role, we surveyed their knowledge in (pharmaco)genetics, their confidence in their ability to use pharmacogenetics and their attitude toward the integration of this tool in clinical practice. Results: A total of 99 pharmacists (community: 67.7%, hospital: 24.2% and other: 8.1%) and 36 students volunteered in a self-administered online survey. About 50% of the questions on the participants’ knowledge are answered correctly, with a stepwise increase of right answers with hours of education in (pharmaco)genetics (51.2, 63.8 and 76.7% for <5, 5–25 and >25 h respectively; p < 0.0001). While the majority of participants believe that pharmacogenetics will gain more room in their future practice (80.7%), the overall rate of confidence in their ability to use pharmacogenetics information is low (22%) and 90.3% desire more training. Conclusion: The limited experience of pharmacists in pharmacogenetics appears to be a barrier for its integration in clinical practice.
Chitin is a structural polysaccharide of the cell walls of fungi and exoskeletons of insects and crustaceans. In this study, chitin was extracted, for the first time in our knowledge, from the Cicada orni sloughs of the south-eastern French Mediterranean basin by treatment with 1 M HCl for demineralization, 1 M NaOH for deproteinization, and 1% NaClO for decolorization. The different steps of extraction were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Results demonstrated that the extraction process was efficiently performed and that Cicada orni sloughs of the south-eastern French Mediterranean basin have a high content of chitin (42.8%) in the α-form with a high degree of acetylation of 96% ± 3.4%. These results make Cicada orni of the south-eastern French Mediterranean basin a new and promising source of chitin. Furthermore, we showed that each step of the extraction present specific characteristics (for example FTIR and XRD spectra and, consequently, distinct absorbance peaks and values of crystallinity as well as defined values of maximum degradation temperatures identifiable by TGA analysis) that could be used to verify the effectiveness of the treatments, and could be favorably compared with other natural chitin sources.
Chitin and its derivative chitosan are among the most used polysaccharides for biomedical and pharmaceutical applications. Most of the commercially available chitin is obtained from seafood wastes. However, the interest in alternative renewable sources of chitin and chitosan, such as insects, is growing. When new sources are identified, their stability over time has to be evaluated to allow for their commercialization. The aim of this study is to compare the physicochemical properties of chitin extracted from Cicada orni sloughs harvested in three different years (2017, 2019 and 2020) in order to assess the stability of the source and the repeatability of the extraction process. Chitin and its derivative chitosan were characterized by simple techniques such as Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Results suggest that the physicochemical properties of the extracted chitin varied from year to year, and that these differences are not due to the extraction process, but rather to intrinsic differences within the source. We showed that these differences could already be detected by analyzing the raw material (i.e., cicada sloughs) using the above-mentioned simple methods. The chitosan obtained from deacetylation of chitin had a low degree of deacetylation (66.2±1.6%). This low degree of deacetylation can be attributed to the deacetylation process, which is probably not appropriate for this source of chitin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.