Abstract. We prove that every rational language of words indexed by linear orderings is definable in monadic second-order logic. We also show that the converse is true for the class of languages indexed by countable scattered linear orderings, but false in the general case. As a corollary we prove that the inclusion problem for rational languages of words indexed by countable linear orderings is decidable.
Abstract. We prove that every rational language of words indexed by linear orderings is definable in monadic second-order logic. We also show that the converse is true for the class of languages indexed by countable scattered linear orderings, but false in the general case. As a corollary we prove that the inclusion problem for rational languages of words indexed by countable linear orderings is decidable.
In a preceding paper (Bruyère and Carton, automata on linear orderings, MFCS'01), automata have been introduced for words indexed by linear orderings. These automata are a generalization of automata for finite, infinite, bi-infinite and even transfinite words studied by Büchi. Kleene's theorem has been generalized to these words. We prove that rational sets of words on countable scattered linear orderings are closed under complementation using an algebraic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.