CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pK(a) values of 6 or below. Chelator competition experiments demonstrated that the protein binds Cu(I) with extremely high affinity, with a small but significant pH-dependence over the range pH 6.5-8.0. From these data, a pH-corrected formation constant, beta(2)= approximately 6 x 10(22) M(-2), was determined. Rapid exchange of Cu(I) between CopZ and the Cu(I)-chelator BCS (bathocuproine disulfonate) indicated that the mechanism of exchange does not involve simple dissociation of Cu(I) from CopZ (or BCS), but instead proceeds via the formation of a transient Cu(I)-mediated protein-chelator complex. Such a mechanism has similarities to the Cu(I)-exchange pathway that occurs between components of copper-trafficking pathways.
CopA, a P-type ATPase from Bacillus subtilis, plays a major role in the resistance of the cell to copper by effecting the export of the metal across the cytoplasmic membrane. The N-terminus of the protein features two soluble domains (a and b), that each contain a Cu(I)-binding motif, MTCAAC. We have generated a stable form of the wild-type two-domain protein, CopAab, and determined its solution structure. This was found to be similar to that reported previously for a higher stability S46V variant, with minor differences mostly confined to the Ser(46)-containing beta3-strand of domain a. Chemical-shift analysis demonstrated that the two Cu(I)-binding motifs, located at different ends of the protein molecule, are both able to participate in Cu(I) binding and that Cu(I) is in rapid exchange between protein molecules. Surprisingly, UV-visible and fluorescence spectroscopy indicate very different modes of Cu(I) binding below and above a level of 1 Cu(I) per protein, consistent with a major structural change occurring above 1 Cu(I) per CopAab. Analytical equilibrium centrifugation and gel filtration results show that this is a result of Cu(I)-mediated dimerization of the protein. The resulting species is highly luminescent, indicating the presence of a solvent-shielded Cu(I) cluster.
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P(1B)-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.
CopA from Bacillus subtilis is a Cu(I)-transporting P-type ATPase involved in resistance to high levels of environmental copper. At its N-terminus are two soluble domains, a and b, that, when generated in isolation from the membrane part, have previously been shown to exhibit unusual Cu(I)-binding behaviour: at >1 Cu(I) per CopAab the protein dimerises, resulting in the formation of a species with luminescence properties characteristic of a solvent-shielded Cu(I) cluster. Further insight into the Cu(I)-binding properties of CopAab are now reported. We demonstrate that the initial binding of Cu(I) occurs with very high affinity (K = -4 x 10(17) M(-1)) and that CopAab can accommodate up to 4 Cu(I) per protein and remains dimeric at higher Cu(I)-loadings. Fitting of UV-visible, near UV CD, fluorescence and luminescence spectroscopic titration data supports a model in which Cu(I) binds sequentially to CopAab, and also provides estimates of the association constants for Cu(I)-binding and dimerisation steps. Finally, low molecular weight thiols are shown not to affect the initial binding of Cu(I), but significantly influence binding at levels >1 Cu(I) per CopAab such that dimerisation is inhibited, though not abolished.
Heme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein. Here we show that the Rhizobium leguminosarum global iron regulatory protein Irr, which has many homologues within the ␣-proteobacteria and is a member of the Fur superfamily, binds heme, resulting in a dramatic decrease in affinity between the protein and its cognate, regulatory DNA operator sequence. Spectroscopic studies of wild-type and mutant Irr showed that the principal (but not only) heme-binding site is at a conserved HXH motif, whose substitution led to loss of DNA binding in vitro and of regulatory function in vivo. The R. leguminosarum Irr behaves very differently to the Irr of Bradyrhizobium japonicum, which is rapidly degraded in vivo by an unknown mechanism in conditions of elevated iron or heme, but whose DNA binding affinity in vitro does not respond to heme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.