Premise Invasive plants in wetlands are often ecosystem engineers, mediating changes in ecosystem functions like trophic support. We documented the impacts of Lepidium latifolium, an invasive plant, on the food web of omnivorous birds (Suisun song sparrows, Melospiza melodia maxillaris) in a tidal wetland of northern California, USA. Methods We used analysis of natural abundance stable isotopes of 13C and 15N in song sparrow blood, invertebrate food sources, L. latifolium seeds, and other marsh plant seeds to inform Bayesian, concentration‐dependent mixing models that predicted average song sparrow diets. Results Season and plant phenology influenced food source incorporation and isotopic signatures. Song sparrows showed higher isotopic variability in the summer. The observed changes in song sparrow diets were driven by altered invertebrate communities related to seasonal L. latifolium presence and by shifts from seeds to consumption of invertebrate food sources during the breeding season in the spring and summer. Discussion This study used stable isotope tools and modeling to demonstrate two mechanisms of isotopic influence by L. latifolium on omnivorous song sparrows. This study can inform site‐ and species‐specific management strategies by demonstrating how changes to the plant community can impact entire trophic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.