-The ability of nano-silversol-coated activated carbon (NSSCAC) to adsorb Pb 2+ from aqueous solution has been investigated through batch experiments. The adsorption of lead onto NSSCAC has been found to depend on adsorbent dose, initial concentration and contact time. The experiments were carried out at natural solution pH. Equilibrium data fitted well with the Langmuir model and Freundlich model with a maximum adsorption capacity of 23.81 mg of Pb/g of NSSCAC. The experiments showed that the highest removal rate was 92.42% for Pb 2+ under optimal conditions. The sorption of Pb 2+ on NSSCAC was rapid during the first 30 min and the equilibrium attained within 60 min. The kinetic processes of Pb 2+ adsorption on NSSCAC were described by applying pseudo-first-order and pseudo-second-order kinetic models. The kinetic data for the adsorption process obeyed a pseudo-second-order kinetic model, suggesting that the adsorption process is chemisorption. The NSSCAC investigated in this study showed good potential for the removal of Pb 2+ from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.