Visual analytics and visualisation can leverage the human perceptual system to interpret and uncover hidden patterns in big data. The advent of next-generation sequencing technologies has allowed the rapid production of massive amounts of genomic data and created a corresponding need for new tools and methods for visualising and interpreting these data. Visualising genomic data requires not only simply plotting of data but should also offer a decision or a choice about what the message should be conveyed in the particular plot; which methodologies should be used to represent the results must provide an easy, clear, and accurate way to the clinicians, experts, or researchers to interact with the data. Genomic data visual analytics is rapidly evolving in parallel with advances in high-throughput technologies such as artificial intelligence (AI) and virtual reality (VR). Personalised medicine requires new genomic visualisation tools, which can efficiently extract knowledge from the genomic data and speed up expert decisions about the best treatment of individual patient’s needs. However, meaningful visual analytics of such large genomic data remains a serious challenge. This article provides a comprehensive systematic review and discussion on the tools, methods, and trends for visual analytics of cancer-related genomic data. We reviewed methods for genomic data visualisation including traditional approaches such as scatter plots, heatmaps, coordinates, and networks, as well as emerging technologies using AI and VR. We also demonstrate the development of genomic data visualisation tools over time and analyse the evolution of visualising genomic data.
The significant advancement of inexpensive and portable virtual reality (VR) and augmented reality devices has re-energised the research in the immersive analytics field. The immersive environment is different from a traditional 2D display used to analyse 3D data as it provides a unified environment that supports immersion in a 3D scene, gestural interaction, haptic feedback and spatial audio. Genomic data analysis has been used in oncology to understand better the relationship between genetic profile, cancer type, and treatment option. This paper proposes a novel immersive analytics tool for cancer patient cohorts in a virtual reality environment, virtual reality to observe oncology data models. We utilise immersive technologies to analyse the gene expression and clinical data of a cohort of cancer patients. Various machine learning algorithms and visualisation methods have also been deployed in VR to enhance the data interrogation process. This is supported with established 2D visual analytics and graphical methods in bioinformatics, such as scatter plots, descriptive statistical information, linear regression, box plot and heatmap into our visualisation. Our approach allows the clinician to interrogate the information that is familiar and meaningful to them while providing them immersive analytics capabilities to make new discoveries toward personalised medicine.
Immersive technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), can connect people using enhanced data visualizations to better involve stakeholders as integral members of the process. Immersive technologies have started to change the research on multidimensional genomic data analysis for disease diagnostics and treatments. Immersive technologies are highlighted in some research for health and clinical needs, especially for precision medicine innovation. The use of immersive technology for genomic data analysis has recently received attention from the research community. Genomic data analytics research seeks to integrate immersive technologies to build more natural human-computer interactions that allow better perception engagements. Immersive technologies, especially VR, help humans perceive the digital world as real and give learning output with lower performance errors and higher accuracy. However, there are limited reviews about immersive technologies used in healthcare and genomic data analysis with specific digital health applications. This paper contributes a comprehensive review of using immersive technologies for digital health applications, including patient-centric applications, medical domain education, and data analysis, especially genomic data visual analytics. We highlight the evolution of a visual analysis using VR as a case study for how immersive technologies step, can by step, move into the genomic data analysis domain. The discussion and conclusion summarize the current immersive technology applications' usability, innovation, and future work in the healthcare domain, and digital health data visual analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.