The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.
Chemokine receptors (CCRs) are important co-stimulatory molecules found on many blood cells and associated with various diseases. The expression and function of CCRs on mast cells has been quite controversial. In this study, we report for the first time that murine bone marrow-derived mast cells (BMMC) express messenger RNA and protein for CCR1. BMMC cultured in the presence of murine recombinant stem cell factor and murine IL-3 expressed CCR1 after 5-6 weeks. We also report for the first time that mBMMC(CCR1+) cells endogenously express neurokinin receptor-1 and intercellular adhesion molecule-1. To examine the activity of CCR1 on these BMMC, we simultaneously stimulated two receptors: CCR1 by its ligand macrophage inflammatory protein-1alpha and the IgE receptor FcepsilonRI by antigen cross-linking. We found that co-stimulation enhanced BMMC degranulation compared with FcepsilonRI stimulation alone, as assessed by beta-hexosaminidase activity (85 versus 54%, P < 0.0001) and Ca(2+) influx (223 versus 183 nM, P < 0.05). We also observed significant increases in mast cell secretion of key growth factors, cytokines and chemokine mediators upon CCR1-FcepsilonRI co-stimulation. These factors include transforming growth factor beta-1, tumor necrosis factor-alpha and the cytokine IL-6. Taken together, our data indicate that CCR1 plays a key role in BMMC function. These findings contribute to our understanding of mechanisms for immune cell trafficking during inflammation.
Chemokines have a clearly defined role in mobilizing the recruitment of leukocytes to both healthy and inflamed tissues. This review details work from our and other laboratories, indicating that beta-chemokines may play important roles (i) in driving the terminal differentiation of mast cell precursors in mucosal tissues and (ii) in providing priming or costimulatory signals required for mast cell activation, leading to an antigen-driven inflammatory response. These data stem from in vivo, ex vivo, and in vitro studies. Data are also presented that suggest that Fc epsilon RI:chemokine receptor cross talk may involve spatiotemporal dynamics that may control the strength and nature of the complex activating signals controlling mast cell effector function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.