In this study, the developmental ability and cellular composition of porcine IVF, parthenote and somatic cell nuclear transfer (SCNT) embryos were evaluated following different in vitro culture systems. Group 1, embryos were cultured in NCSU-23 with 5.55 mM D-glucose (NCSU+) until day 6 on 20% O(2) or 5% O(2) (Group 2). Group 3, embryos were cultured in D-glucose-free NCSU-23 (NCSU-) with 0.17 mM Na pyruvate/2.73 mM Na lactate for 58 h and subsequently cultured in NCSU+ until day 6 (NCSU -/+) on 20% O2 or 5% O(2) (Group 4). IVF blastocysts did not differ significantly with O(2) concentrations, but differed significantly with major energy source (glucose and pyruvate/lactate). In Group 3 and 4 IVF blastocysts, the total cell number and apoptosis rates were not significantly different with different O(2) concentrations. Blastocyst rate, total cell number and apoptosis rate in Groups 3 and 4 parthenote embryos also were not significantly different. Parthenote and SCNT, under the same culture treatment, exhibited significant differences in blastocyst and apoptosis rates (47.5 +/- 16.1 vs. 24.0 +/- 4.0 and 4.9 +/- 9.0 vs. 22.8 +/- 23.3). Apoptosis-generating rate increased in the order parthenote, IVF and then SCNT. In conclusion, in vitro development of porcine embryos was not affected by O(2) concentrations but was affected by major energy source. Even so, the concentration of each major energy source and the timing of its inclusion in culture could accomplish relatively high embryonic development, the apoptosis rate stressed that more work still needs to be done in developing a better defined culture system that could support SCNT embryos equivalent to in vivo preimplantation porcine embryos.
The present study compared the efficiency of transgenic (TG) cloned embryo production by somatic cell nuclear transfer (SCNT) with fetal-derived fibroblast cells (FFCs) which were transfected with pEGFP-N1 to in vitro-fertilized (IVF), parthenogenetic and SCNT counterparts by evaluating the rates of cleavage and blastocyst formation, apoptosis rate at different developmental stages, cell number, ploidy and gene expression in blastocysts. In SCNT and TG embryos, the rates of cleavage and blastocyst formation were significantly lower (p < 0.05) than those of IVF controls, but it did not differ between SCNT and TG embryos. In IVF control, 86.7% embryos displayed diploid chromosomal complements and the rates were significantly (p < 0.05) higher than those of SCNT and TG embryos. Most TG embryos (79%) with FFCs expressed the gene by both PCR and under fluorescence microscopy. The expression of apoptosis by TUNEL was first detected at six to eight cell stages in all embryos of IVF, SCNT and TG groups, but the expression rate at each developmental stages was significantly higher (p < 0.05) in SCNT and TG embryos than in IVF counterparts. The expression rate in inner cell mass (ICM) of TG embryos was significantly higher (p < 0.05) than in SCNT and IVF embryos. These results indicate that the high occurrence of apoptosis observed in SCNT and TG embryos compared with IVF counterparts might influence the developmental competence. Moreover, the SCNT embryos derived using non-transfected donor cells exhibited a lower apoptosis expression in ICM cells than in TG embryos derived using pEGP-N1-transfected donor cells suggesting a possible role of negative gene effect in TG embryos.
This study was carried out to compare the effects of the combination of ionomycin with a H1-histone kinase inhibitor (dimethylaminopurine, DMAP) or cdc2 kinase inhibitor (sodium pyrophosphate, SPP) on the development of reconstituted bovine eggs. For this study, the enucleated bovine oocytes were injected with a presumptive primordial germ cell pre-treated with 1% sodium citrate, and randomly allocated into three activation groups: Group 1 (ionomycin 5 microm, 5 min), Group 2 (ionomycin + DMAP 1.9 mm, 3 h), and Group 3 (ionomycin + SPP 2 mm, 3 h). The reconstituted eggs were compared on the rates of cleavage and development with the blastocyst stage and the ploidy of embryos at 96 h post-activation. Cleavage rates and blastocyst development in Groups 1, 2 and 3 were 7 and 0%, 63 and 17%, and 53 and 14%, respectively. The chromosomal composition differed significantly (p < 0.05) among treatments. Although the embryos in Group 1 had significantly lower developments, 60% of embryos evaluated had diploid chromosomal sets. In contrast, approximately 60% of embryos in Group 2 had abnormal ploidy (21% polyploid and 38% mixoploid). In Group 3, the appearance of abnormal chromosome sets was reduced with the proportion of diploid embryos being increased to 86% (19 of 22), significantly higher (p < 0.05) than in Group 2. It can be concluded that the use of SPP with ionomycin reduces greatly the incidence of chromosomal abnormalities, and may be applicable for the activation of nuclear transplant bovine embryos.
Gene replacement offers a potential cure for degenerative disorders caused by a single gene deletion or mutation. Diagnoses of monogenic disorders in the fetus enable prenatal gene replacement which may be beneficial from the perspectives of host inflammatory/immune response, efficacy and disease prevention. Purpose: To evaluate the distribution and expression of reporter gene green fluorescent protein (GFP) in the tissues of mice survived up to one month following in utero gene therapy. Methods: Vesicular Stomatitis Virus-G (VSV-G) pseudotyped lentiviral (LV) vector containing GFP was prepared via triple plasmid co-transfection. Time-mated CD-1 mice underwent individual amniotic sac injection with either 1x106 LV particles or saline (controls) on gestational day 16 (term=21d), and were allowed to undergo spontaneous parturition. Pups were sacrificed on postnatal days 0, 7, 21 and 28, and neonatal and maternal tissues were analyzed for GFP transgene (by DNA polymerase chain reaction; PCR), and transgene expression by quantitative reverse transcriptase (QRT) PCR and immunohistochemistry (IHC). Results: We observed selective transduction of neonatal tissues (trachea, lung, liver, heart, kidney, spleen, intestine, skeletal muscle), in pups undergoing in utero transfection with LV-GFP. Maternal tissues did not contain transgene despite exposure during amniotic injection. Although the numbers of pups analyzed at each postnatal time point was small, we observed variable persistence of GFP expression that appeared to be tissue specific (with persistent expression noted in intestine of 4 week old pups). Conclusions: Neonatal tissue transfection occurs in a variety of tissues following amniotic injection with LV-GFP in this murine model of in utero gene therapy. Transgene persistence and expression patterns observed over the first 4 weeks of life may reflect tissue-specific genomic insertion of transgene that favors persistent transcription in select tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.