Natural and pharmacological androgen receptor (AR) ligands were tested for their ability to induce the AR NH2-terminal and carboxyl-terminal (N/C) interaction in a two-hybrid protein assay to determine whether N/C complex formation distinguishes in vivo AR agonists from antagonists. High-affinity agonists such as dihydrotestosterone, mibolerone, testosterone, and methyltrienolone at concentrations between 0.1 and 1 nM induce the N/C interaction more than 40-fold. The lower affinity anabolic steroids, oxandrolone and fluoxymesterone, require concentrations of 10-100 nM for up to 23-fold induction of the N/C interaction. However no N/C interaction was detected in the presence of the antagonists, hydroxyflutamide, cyproterone acetate, or RU56187, at concentrations up to 1 microM, or with 1 microM estradiol, progesterone, or medroxyprogesterone acetate; each of these steroids at 1-500 nM inhibited the dihydrotestosterone-induced N/C interaction, with medroxyprogesterone acetate being the most effective. In transient and stable cotransfection assays using the mouse mammary tumor virus reporter vector, all ligands displayed concentration-dependent AR agonist activity that paralleled induction of the N/C interaction, with antagonists and weaker agonists failing to induce the N/C interaction. AR dimerization and DNA binding in mobility shift assays and AR stabilization reflected, but were not dependent on, the N/C interaction. The results indicate that the N/C interaction facilitates agonist potency at low physiological ligand concentrations as detected in transcription, dimerization/DNA binding, and stabilization assays. However the N/C interaction is not required for agonist activity at sufficiently high ligand concentrations, nor does its inhibition imply antagonist activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.