Peripheral leukocyte recruitment in neuroinflammatory conditions can exacerbate brain tissue damage by releasing cytotoxic mediators and by increasing vascular permeability. Cyclooxygenase (COX)-derived prostaglan-dins promote the migration of several immune cells in vitro, however, the specific roles of COX-1 and -2 on leukocyte recruitment in vivo have not been investigated. To examine the specific effects of COX-1 or COX-2 deficiency on neuroinflammation-induced leukocyte infiltration, we used a model of intracerebroventricular lipopolysaccharide (LPS)-induced neuroinflammation in COX-1−/−, COX-2−/−, and their respective wild-type (WT) (+/+) mice. After LPS, leukocyte infiltration and inflammatory response were attenuated in COX-1−/− and increased in COX-2−/− mice, compared with their respective WT controls. This influx of leukocytes was accompanied by a marked disruption of blood–brain barrier and differential expression of chemokines. These results indicate that COX-1 and COX-2 deletion differentially modulate leukocyte recruitment during neuroinflammation, and suggest that inhibition of COX-1 activity is beneficial, whereas COX-2 inhibition is detrimental, during a primary neuroinflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.