Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia’s forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140–490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century.
The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from −20% to more than −50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
Trends in air temperature and precipitation in the forest-steppe ecotone of the western Khentey, northern Mongolia were studied and related to stem increment and shoot water relations in Mongolia's most common tree species, Siberian larch (Larix sibirica). The area has been subject to a significant increase of summer temperature and a decrease of summer precipitation during the last 47 years. Tree-ring width series from 4400 larch trees show a strongly decreasing annual increment since the 1940s. The onset of this decrease is independent of the age of the trees and, therefore, can be attributed to the increasing aridity in the 20th century. Simultaneously to the declining annual increment, regeneration of Siberian larch decreased as well; today regeneration is virtually lacking in the larch forests on mountain slopes of the western Khentey. Measurements of shoot water potentials during the growing season exhibited daily minimum water potentials close to the point of zero turgor for extended periods. The drought stress indicated by these results is in line with the current low annual increment. Trees in the forest interior were more severely stressed and grow more slowly than trees at the forest line to steppe. This is attributable to the recent increase in aridity, as the stand density and probably also the trees themselves in the forest interior are adapted to moister conditions, whereas the trees at the forest edge have always been exposed to a more extreme microclimate. The progressing increase in aridity during the 21st century that is predicted for the western Khentey, suggests a future decline of larch forests. A widespread increase of aridity predicted for most parts of the Mongolian forest belt, suggests even a supra-regional decline of larch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.