Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.
A Gram-stain-variable, rod-shaped and endospore-forming bacterium, designated strain L7-75, was isolated from duckweed (Lemna aequinoctialis). Cells were motile with a monopolar flagellum. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain L7-75
An actinobacterial strain, DCWR9-8-2(T), was isolated from a leaf of Thai upland rice (Oryza sativa) collected in Chumporn province, Thailand. Strain DCWR9-8-2(T) is Gram-stain-positive aerobic bacteria that produce single spores directly on the vegetative hypha. Cell wall peptidoglycan of this strain exhibits meso-diaminopimelic acid and glycine, the reducing sugars of whole-cell hydrolysate are arabinose, glucose, ribose, xylose and small amount of mannose. The phospholipid profiles in the membrane are comprised of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides. The major menaquinones are MK-9(H4) and MK-10(H6). The diagnostic cellular fatty acids are iso-C16:0 and iso-C15:0. The G+C content of the genomic DNA is 72.5 mol%. The result of 16S rRNA sequence analysis of the strain revealed that this strain was closely related to Micromonospora auratinigra TT1-11(T) (99.25%). On the other hand, the result of gyrB gene sequence analysis revealed that this strain was closed to M. eburnea JCM 12345(T) (96.30%). In addition, a combination of DNA-DNA hybridization results and some phenotypic properties supported that this strain should be judged as a novel species of the genus Micromonospora, for which the name M. endophytica sp. nov. is proposed. The type strain is DCWR9-8-2(T) (=BCC 67267(T)=NBRC 110008(T)).
Understanding the control of anthocyanin biosynthesis is beneficial to genetic improvement for floral production in Dendrobium orchids. Full-length cDNA of CHS, CHI1, CHI2, F3H, DFR, ANS, F3'5'H, and FLS was isolated from Dendrobium hybrids with purple, peach, white and greenish white flowers. Analysis of the deduced amino acid sequences and gene expression levels of the eight genes suggested potential causes of color variation among the hybrids. Peach hybrid (SC) was likely due to changes in anthocyanin production from cyanidin to pelargonidin through mutations in F3'H, and the low color intensity was likely derived from the low expression levels of CHI1 and CHI2. In addition, white hybrid (RW) was likely caused by several mutations in F3H and/or high expression levels of FLS, an enzyme that converts color flavonoid intermediates into colorless flavonols. Simultaneous loss of F3H, DFR, and ANS expression observed in another white hybrid (JW) indicated that an alteration of anthocyanin regulatory controls was likely the cause of white coloration. Furthermore, analysis of hybrid mutants bearing pale and dark flowers demonstrated the influence of the expression of anthocyanin genes on the intensity of flower colors. Data obtained from this work could contribute to new strategies for future orchid breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.