BackgroundHemoglobin E/β-thalassemia is particularly common in Southeast Asia and has variable symptoms ranging from mild to severe anemia. Previous investigations demonstrated the remarkable symptoms of β-thalassemia in terms of the acceleration of apoptotic cell death. Ineffective erythropoiesis has been studied in human hematopoietic stem cells, however the distinct apoptotic mechanism was unclear.MethodsThe phosphoproteome of bone marrow HSCs/CD34+ cells from HbE/β-thalassemic patients was analyzed using IMAC phosphoprotein isolation followed by LC-MS/MS detection. Decyder MS software was used to quantitate differentially expressed proteins in 3 patients and 2 normal donors. The differentially expressed proteins from HSCs/CD34+ cells were compared with HbE/β-thalassemia and normal HSCs.ResultsA significant change in abundance of 229 phosphoproteins was demonstrated. Importantly, the analysis of the candidate proteins revealed a high abundance of proteins that are commonly found in apoptotic cells including cytochrome C, caspase 6 and apoptosis inducing factors. Moreover, in the HSCs patients a significant increase was observed in a specific type of phosphoserine/threonine binding protein, which is known to act as an important signal mediator for the regulation of cell survival and apoptosis in HbE/β-thalassemia.ConclusionsOur study used a novel method to investigate proteins that influence a particular pathway in a given disease or physiological condition. Ultimately, phosphoproteome profiling in HbE/β-thalassemic stem cells is an effective method to further investigate the cell death mechanism of ineffective erythropoiesis in β-thalassemia. Our report provides a comprehensive phosphoproteome, an important resource for the study of ineffective erythropoiesis and developing therapies for HbE/β-thalassemia.
BackgroundSevere anaemia due to dyserythropoiesis has been documented in patients infected with Plasmodium vivax, however the mechanism responsible for anaemia in vivax malaria is poorly understood. In order to better understand the role of P. vivax infection in anaemia the inhibition of erythropoiesis using haematopoietic stem cells was investigated.MethodsHaematopoietic stem cells/CD34+ cells, isolated from normal human cord blood were used to generate growing erythroid cells. Exposure of CD34+ cells and growing erythroid cells to P. vivax parasites either from intact or lysed infected erythrocytes (IE) was examined for the effect on inhibition of cell development compared with untreated controls.ResultsBoth lysed and intact infected erythrocytes significantly inhibited erythroid growth. The reduction of erythroid growth did not differ significantly between exposure to intact and lysed IE and the mean growth relative to unexposed controls was 59.4 ± 5.2 for lysed IE and 57 ± 8.5% for intact IE. Interestingly, CD34+ cells/erythroid progenitor cells were susceptible to the inhibitory effect of P. vivax on cell expansion. Exposure to P. vivax also inhibited erythroid development, as determined by the reduced expression of glycophorin A (28.1%) and CD 71 (43.9%). Moreover, vivax parasites perturbed the division of erythroid cells, as measured by the Cytokinesis Block Proliferation Index, which was reduced to 1.35 ± 0.05 (P-value < 0.01) from a value of 2.08 ± 0.07 in controls. Neither TNF-a nor IFN-g was detected in the culture medium of erythroid cells treated with P. vivax, indicating that impaired erythropoiesis was independent of these cytokines.ConclusionsThis study shows for the first time that P. vivax parasites inhibit erythroid development leading to ineffective erythropoiesis and highlights the potential of P. vivax to cause severe anaemia.
In beta thalassemia/hemoglobin E (Hb E), abnormally high levels of oxidative stress account for accelerated senescence and increased destruction of erythrocytes. The present study aimed to investigate the role of glutathione efflux transporters, namely cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein 1 (MRP1), in the control of glutathione levels and protection against oxidative challenges in beta thalassemia/Hb E erythrocytes. We found that CFTR protein was expressed in the erythrocytes of beta thalassemia/Hb E patients. Treatments with GlyH-101 (50 µM), a small molecule CFTR inhibitor, and MK571 (50 µM), an MRP1 inhibitor, reduced H2O2-induced free radical generation in the erythrocytes by ∼80% and 50%, respectively. Furthermore, combined treatment with GlyH-101 and MK571 completely abolished the induction of reactive oxygen radicals. Increased oxidative stress in the erythrocytes following H2O2 challenges was accompanied by a decrease in intracellular level of reduced glutathione (GSH), which was prevented by treatments with GlyH-101 and MK571. CMFDA-based assays revealed that GlyH-101 and MK571 reduced H2O2-induced glutathione efflux from the erythrocytes by 87% and 66%, respectively. Interestingly, H2O2-induced osmotic tolerance of erythrocytes, a sign of erythrocyte aging, was ameliorated by treatment with GlyH-101. Our study indicates that oxidative stress induces glutathione efflux via CFTR and MRP1 in beta thalassemia/Hb E erythrocytes. Pharmacological inhibition of glutathione efflux represents a potential therapy to delay aging and premature destruction of erythrocytes in beta thalassemia/Hb E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.