An increase in global consumption has led to an exponential increase in industrial production activities which inevitably results in overwhelming remain of industrial waste. Consequently it has driven increasing attentions of research and development teams in various countries to propose and investigate novel methodologies to utilize such industrial waste. Instead of using as alternative energy sources, usage of industrial waste for production of carbonaceous nanomaterials has been examined via various routes, such as catalytic pyrolysis, hydrothermal treatment and so on. Meanwhile, for sustainable and secure continuity of the carbonaceous nanomaterial production, broad spectra of promising applications have also been examined. Among those emerging applications, utilization of carbonaceous nanomaterials in pollution control and prevention has been focused worldwide. Therefore, in this review, relevant research works focusing on catalytic pyrolysis of carbonaceous industrial waste for carbonaceous nanomaterial production were comprehensively analyzed and summarized. In addition, promising applications involving with antibiotic removal, spilled oil handling and pollutant gas detection were also reviewed.
Acid-functionalized multi-wall carbon nanotubes (MWCNTs) catalysts were prepared by a wet chemical sonication with various acid solutions, i.e. H2SO4, H3PO4, HNO3, and HCl. Sulfonic groups and carboxyl groups were detected on MWCNTs with H2SO4 treatment (s-MWCNTs), while only carboxyl groups were presented from other acid treatments. The catalytic dehydration of D-xylose into furfural was evaluated using a batch reactor at 170 °C for 3 h under N2 pressure of 15 bar. The highest furfural selectivity was achieved around 57% by s-MWCNTs catalyst, suggesting a positive role of the sulfonic functionalized groups. The effect of Co species was related to their Lewis acid property resulting in the enhancement of xylose conversion with low selectivity to furfural product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.