We demonstrate that magnetic properties of ultra-thin Co films adjacent to Gd 2 O 3 gate oxides can be directly manipulated by voltage. The Co films can be reversibly changed from an optimallyoxidized state with a strong perpendicular magnetic anisotropy to a metallic state with an in-plane magnetic anisotropy, or to an oxidized state with nearly zero magnetization, depending on the polarity and time duration of the applied electric fields. Consequently, an unprecedentedly large change of magnetic anisotropy energy up to 0.73 erg/cm 2 has been realized in a nonvolatile manner using gate voltages of only a few volts. These results open a new route to achieve ultra-low energy magnetization manipulation in spintronic devices.
Although the kinetics of CF formation/ dissolution is still unclear, it is widely accepted that the CF formation/dissolution is strongly related to the electromigration and electrochemical reaction of anion (i.e., oxygen vacancy) [13][14][15][16] or cation (i.e., Cu 2+ , Ag + or Ni 2+ ). [17][18][19][20][21][22] Generally, RS behavior can be classifi ed as two modes: nonvolatile memory switching (MS) and volatile threshold switching (TS). In the MS mode, both LRS and HRS can be maintained after removing the external voltage, while the LRS in the TS mode will be back to the HRS once the applied voltage is smaller than a critical value. [23][24][25] To avoid confusion with MS, the LRS and HRS in TS are renamed as "TS ON-state" and "TS OFFstate" in this article. The MS device can be used for the non-volatile data storage [1][2][3][4][5] while TS device can be as a selector in series with memory cell to suppress crosstalk effect in the crossbar array. [26][27][28][29][30] Recently, some groups reported that TS and MS can coexist and mutually transform in a single device at suitable external excitation. [23][24][25][26][27][28] Several models have been proposed to explain this phenomenon, including CF thermal instability, [ 23 ] strong electron correlation effect, [ 24 ] quantum-wire model, [ 25 ] interface barrier modulation, [ 26 ] and space charge effect. [ 27 ] However, the underlying mechanism of the phenomenon is still unclear, especially lacking of direct evidences to uncover when and how the two RS modes happen and what is the internal relationship between them.Here, we demonstrate that the TS and MS modes can be modulated in the Ag/SiO 2 /Pt structure by controlling the compliance current ( I CC ) in electroforming. We systematically investigate the morphologies, chemical components, and dynamic growth of the CF using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) analysis. The results confi rm that the TS and MS modes correspond to the CF consisting of isolated and continuous Ag nanocrystals, respectively. In addition, by Kelvin probe force microscopy (KPFM) studies, the voltage potential distribution of CF in the ON-and OFF-state further indicate that the TS mode is Volatile threshold switching (TS) and non-volatile memory switching (MS) are two typical resistive switching (RS) phenomena in oxides, which could form the basis for memory, analog circuits, and neuromorphic applications. Interestingly, TS and MS can be coexistent and converted in a single device under the suitable external excitation. However, the origin of the transition from TS to MS is still unclear due to the lack of direct experimental evidence. Here, conversion between TS and MS induced by conductive fi lament (CF) morphology in Ag/SiO 2 /Pt device is directly observed using scanning electron microscopy and high-resolution transmission electron microscopy. The MS mechanism is related to the formation and dissolution of CF consisting of continuous Ag...
Memory cells have always been an important element of information technology. With emerging technologies like big data and cloud computing, the scale and complexity of data storage has reached an unprecedented peak with a much higher requirement for memory technology. As is well known, better data storage is mostly achieved by miniaturization. However, as the size of the memory device is reduced, a series of problems, such as drain gate‐induced leakage, greatly hinder the performance of memory units. To meet the increasing demands of information technology, novel and high‐performance memory is urgently needed. Fortunately, emerging memory technologies are expected to improve memory performance and drive the information revolution. This review will focus on the progress of several emerging memory technologies, including two‐dimensional material‐based memories, resistance random access memory (RRAM), magnetic random access memory (MRAM), and phase‐change random access memory (PCRAM). Advantages, mechanisms, and applications of these diverse memory technologies will be discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.