Camera networks are being deployed for various applications like security and surveillance, disaster response and environmental modeling. However, there is little automated processing of the data. Moreover, most methods for multicamera analysis are centralized schemes that require the data to be present at a central server. In many applications, this is prohibitively expensive, both technically and economically. In this paper, we investigate distributed scene analysis algorithms by leveraging upon concepts of consensus that have been studied in the context of multiagent systems, but have had little applications in video analysis. Each camera estimates certain parameters based upon its own sensed data which is then shared locally with the neighboring cameras in an iterative fashion, and a final estimate is arrived at in the network using consensus algorithms. We specifically focus on two basic problems-tracking and activity recognition. For multitarget tracking in a distributed camera network, we show how the Kalman-Consensus algorithm can be adapted to take into account the directional nature of video sensors and the network topology. For the activity recognition problem, we derive a probabilistic consensus scheme that combines the similarity scores of neighboring cameras to come up with a probability for each action at the network level. Thorough experimental results are shown on real data along with a quantitative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.