Actinobacillus actinomycetemcomitans strains with enhanced levels of production of leukotoxin are characterized by a 530-bp deletion from the promoter region of the leukotoxin gene operon. Previous isolates with this deletion constituted a single clone belonging to serotype b, although they displayed minor differences among each other. We have analyzed the geographic dissemination of this clone by examining 326 A. actinomycetemcomitans isolates from healthy and periodontally diseased individuals as well as from patients with different types of extraoral infections originating from countries worldwide. A total of 38 isolates, all belonging to the same clone, showed the 530-bp deletion. Comparison of a 440-bp sequence from the promoter region of the leukotoxin gene operon from 10 of these strains revealed complete identity, which indicates that the deletion originates from a single mutational event. This particular clone was exclusively associated with localized juvenile periodontitis (LJP). In at least 12 of 28 families from which the clone was isolated, more than one family member had LJP. Notably, all the subjects carrying this clone had a genetic affiliation with the African population. These observations suggest that juvenile periodontitis in some adolescents with an African origin is associated with a disseminating clone of A. actinomycetemcomitans.
Rat calvarial osteoblasts were grown in porous chitosan sponges fabricated by freeze drying. The prepared chitosan sponges had a porous structure with a 100-200 microm pore diameter, which allowed cell proliferation. Cell density, alkaline phosphatase activity and calcium deposition were monitored for up to 56 d culture. Cell numbers were 4 x 10(6) (day 1), 11 x 10(6) (day 28) and 12 x 10(6) (day 56) per g sponge. Calcium depositions were 9 (day 1), 40 (day 28) and 48 (day 56) microg per sponge. Histological results corroborated that bone formation within the sponges had occurred. These results show that chitosan sponges can be used as effective scaffolding materials for tissue engineered bone formation in vitro.
The biocompatibility of the chitosan nanofiber membrane was confirmed, with enhanced bone regeneration and no evidence of an inflammatory reaction. This experiment shows that the novel biodegradable chitosan nanofiber membrane may be useful as a tool for guided bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.