The nanotubular surface of titanium implants is known to have superior osteogenic activity but is also vulnerable to failure because of induced bacterial attachment and consequent secondary infection. Here, the problem was attempted to be solved by depositing nanosized tetracycline (TC)-loaded particles in poly(lactic-co-glycolic acid) on titania nanotubes (TNTs) using the electrospray deposition method. The antibacterial effect of the newly formed TNT surface was considered using the common pathogen Staphylococcus aureus. Maintenance of the biocompatibility and osteogenic characteristics of TNTs has been tested through cytotoxicity tests and osteogenic gene expression/extra-cellular matrix mineralization, respectively. The results showed that TNTs were successfully formed by anodization, and the characterization of TC deposited on the TNTs was controlled by varying the spraying parameters such as particle size and coating time. The TC nanoparticle-coated TNTs showed antibacterial activity against Staphylococcus aureus and biocompatibility with MC3T3-E1 pre-osteoblasts, while the osteogenic activity of the TNT structure was preserved, as demonstrated by osteocalcin and osteopontin gene expression, as well as Alizarin red staining. Hence, this study concluded that the electrosprayed TC coating of TNTs is a simple and effective method for the formation of bactericidal implants that can maintain osteogenic activity.
Drug releasing porous poly(epsilon-caprolactone) (PCL)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCL matrices. PDGF-BB was incorporated into PCL-chitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 microm pore diameter that was suitable for cellular migration and osteoid ingrowth. NaHCO3 as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-BB was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-BB loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.