A nine-layer WS/MoS heterostructure is established on a sapphire substrate after sequential growth of large-area and uniform five- and four-layer MoS and WS films by using sulfurization of predeposited 1.0 nm molybdenum (Mo) and tungsten (W), respectively. By using the results obtained from the ultraviolet photoelectron spectroscopy and the absorption spectrum measurements of the standalone MoS and WS samples, a type-II band alignment is predicated for the WS/MoS heterostructure. Increasing drain currents and enhanced field-effect mobility value of the transistor fabricated on the heterostructure suggested that a channel with higher electron concentration compared with the standalone MoS transistor channel is obtained with electron injection from WS to MoS under thermal equilibrium. Selective 2D crystal growth with (I) blank sapphire substrate, (II) standalone MoS, (III) WS/MoS heterostructure, and (IV) standalone WS was demonstrated on a single sapphire substrate. The results have revealed the potential of this growth technique for practical applications.
Single-crystal antimonene flakes are observed on sapphire substrates after the postgrowth annealing procedure of amorphous antimony (Sb) droplets prepared by using molecular beam epitaxy at room temperature. The large wetting angles of the antimonene flakes to the sapphire substrate suggest that an alternate substrate should be adopted to obtain a continuous antimonene film. By using a bilayer MoS/sapphire sample as the new substrate, a continuous and single-crystal antimonene film is obtained at a low growth temperature of 200 °C. The results are consistent with the theoretical prediction of the lower interface energy between antimonene and MoS. The different interface energies of antimonene between sapphire and MoS surfaces lead to the selective growth of antimonene only atop MoS surfaces on a prepatterned MoS/sapphire substrate. With similar sheet resistance to graphene, it is possible to use antimonene as the contact metal of 2D material devices. Compared with Au/Ti electrodes, a specific contact resistance reduction up to 3 orders of magnitude is observed by using the multilayer antimonene as the contact metal to MoS. The lower contact resistance, the lower growth temperature, and the preferential growth to other 2D materials have made antimonene a promising candidate as the contact metal for 2D material devices.
A growth model is proposed for the large-area and uniform MoS2 film grown by using sulfurization of pre-deposited Mo films on sapphire substrates. During the sulfurization procedure, the competition between the two mechanisms of the Mo oxide segregation to form small clusters and the sulfurization reaction to form planar MoS2 film is determined by the amount of background sulfur. Small Mo oxide clusters are observed under the sulfur deficient condition, while large-area and complete MoS2 films are obtained under the sulfur sufficient condition. Precise layer number controllability is also achieved by controlling the pre-deposited Mo film thicknesses. The drain currents in positive dependence on the layer numbers of the MoS2 transistors with 1-, 3- and 5- layer MoS2 have demonstrated small variation in material characteristics between each MoS2 layer prepared by using this growth technique. By sequential transition metal deposition and sulfurization procedures, a WS2/MoS2/WS2 double hetero-structure is demonstrated. Large-area growth, layer number controllability and the possibility of hetero-structure establishment by using sequential metal deposition and following sulfurization procedures have revealed the potential of this growth technique for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.