The bathymetry around Antarctica can govern the shelf sea circulations and play a key role in conditioning water masses. In Prydz Bay, the Prydz Bay Gyre and coastal currents are also determined by the continental shelf topography. However, due to the paucity of beam echo sounding data, the bathymetric datasets in Prydz Bay still have large uncertainties. With the aid of in situ hydrographic observations, this study focuses on the correction of an up-to-date bathymetric dataset and the resultant influences on the shelf circulation and the basal melting of the ice shelves. The corrected bathymetry mainly improves the biased shallow representations in the uncorrected bathymetric data set, with a maximum change of ~500 m deepening in the eastern flank of Prydz Bay. Sensitivity numerical experiments show that the bathymetric corrections in Prydz Bay have a significant impact on the circulation pattern and onshore warm water intrusions. In addition, the corrected bathymetry markedly decreases the heat transport towards the calving front of the Amery Ice Shelf. The onshore heat transport reduces by ~22.18% from ~5.23×1013 J s-1 to ~4.07×1013 J s-1 over the outer shelf. Over the inner shelf, the heat transport towards the Amery Ice Shelf reduces by ~18.15% from ~5.95×1013 J s-1 to ~4.87×1013 J s-1. Consequently, the temporally and spatially averaged basal melting rate of the Amery Ice Shelf reduces by ~13.04% from ~0.69 m yr-1 to ~0.60 m yr-1.
The mass balance of the Antarctic Ice Sheet (AIS) is important to global sea-level change. The AIS loses mass mainly through basal melting and subsequent calving of the Antarctic ice shelves. However, the simulated basal melting rates are very uncertain in ice sheet models, partially resulting from the poor understanding of oceanic heat transports. In this article, we review the recent progress in understanding and simulating such heat transports. Regulated by major circulation features, Circumpolar Deep Water (CDW) is much closer to the Bellingshausen–Amundsen Seas and the Cooperation Sea (60°E to 90°E) and the sector further east to 160°E. The ice shelves within these sectors are experiencing enhanced basal melting resulting from tropical forcing and intensified westerlies. Around West Antarctica, the isopycnal structure favors the delivery of CDW across slopes and shelves, while around East Antarctica, the persistent and strong westward Antarctic Slope Current (Front) acts to prevent warm-water intrusion. Both eddies and troughs favor heat transport to the fronts of the ice shelves and even into the cavities. The sharp contrast between the water column thicknesses on both sides of ice shelf fronts blocks the barotropic inflows and can excite topographic Rossby waves. Inside the cavities, the heat fluxes to the bases of the ice shelves are controlled by the cavity geometry, the circulations in the cavities, and the properties of the water masses beneath the ice shelves. Limited direct observations of cavities have promoted the development of various models. To improve basal melting simulations, meltwater plume models have been developed to study meltwater-laden mixed layer dynamics by increasing the vertical resolution, with recent advanced studies considering the vertical structures of frazil ice concentration and velocity. To reduce the uncertainties in the simulated and projected basal mass loss of the Antarctic ice shelves, future efforts should be devoted to improving the bathymetry and cavity geometry, investigating small-scale processes and parameterizing these processes in coupled climate–ice sheet models, and quantifying the feedback from the mass loss of the AIS.
Antarctic Bottom Water (AABW) mainly originates from the Antarctic marginal seas. As the key lower limb of the global overturning circulation, AABW is an important sink of CO 2 and heat (Sigman & Boyle, 2000), and the changes in its properties can affect the global sea level change (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.