The application of iron oxide to NH3-SCR is attractive but largely hindered by its poor acid properties, and surface sulfation is proven to be a prominent way of enhancing the acidity. As such, the method of enriching the sulfate species on iron oxide is crucial for improving the NH3-SCR performance. In the present study, by employing ammonium bisulfate (ABS) as the source of gaseous SO2 for the purpose of trapping, we reported an effective strategy for enhancing the SO42− immobilization on α-Fe2O3 catalyst via spatial confinement in a mesoporous SBA-15 framework. Interestingly, although the presence of the mesopore channel had an adverse effect on the ABS decomposition, which was expected to produce less available SO2, the measured SO42− immobilized on α-Fe2O3 in the mesoporous SBA-15 system was significantly greater than that of the regular SiO2, demonstrating the promoting effect of the spatial confinement on the SO42− enrichment. Further characterizations of the NH3-TPD, NO oxidation, and NH3-SCR performance tests proved that, as a result of the enhanced acidity, the enrichment of SO42− on α-Fe2O3 displayed a clear correlation with the SCR activity. The results of the present study provide an effective strategy for boosting the catalytic performance of iron oxide in NH3-SCR via SO42− enrichment.
Herein, two CeO2 samples dominantly decorated with surface and bulk sulfates were constructed and their distinct effects on high-temperature NH3-SCR were investigated by strictly controlling the sulfate content at a comparable level. The obtainment of surface and bulk sulfates was revealed using a designed leaching experiment, and further evidenced by the characterization results from XPS and H2-TPR. In comparison with CeO2 modified with bulk sulfates (B-CeS), sufficient acid sites with strong intensity were generated on CeO2 modified with surface sulfates (S-CeS). In addition, due to electron-withdrawing effect from S=O in sulfate species, NH3 oxidation over S-CeS was greatly suppressed, providing an additional contribution to enhanced performance in high-temperature NH3-SCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.