III-nitride deep ultraviolet (DUV) light-emitting diodes (LEDs) have been identified as promising candidates for energy-efficient, environment-friendly and robust UV lighting sources with potential applications in water/air purification, sterilization, and bio-sensing. However, the performance of state-of-art DUV LEDs is far from satisfactory for commercialization due to their low internal quantum efficiency, large current leakage and efficiency droop at high current injection, etc. Extensive efforts have been devoted to properly designing the band structures of such luminescent devices to enhance their output power. In this review, we summarize the recent progress of various energy band designs and of the engineering of DUV LEDs, with particular attention paid to the various approaches in band engineering of electron-blocking layers, quantum wells, quantum barriers and the implementation of many novel structures such as tunnel junctions and ultrathin quantum heterostructures utilized to enhance their efficiency. These inspirational approaches pave the way towards the next generation of greener and more efficient UV sources suitable for practical applications.
Wide bandgap aluminum gallium nitride (AlGaN) semiconductor alloys have established themselves as the key materials for building ultraviolet (UV) optoelectronic and power electronic devices. However, further improvements to device performance are lagging, largely due to the difficulties in precisely controlling carrier behavior, both carrier generation and carrier transport, within AlGaN-based devices. Fortunately, it has been discovered that instead of using AlGaN layers with fixed Al compositions, by grading the Al composition along the growth direction, it is possible to (1) generate high-density electrons and holes via polarization-induced doping; (2) manipulate carrier transport behavior via energy band modulation, also known as ‘band engineering’. Consequently, such compositionally graded AlGaN alloys have attracted extensive interest as promising building blocks for efficient AlGaN-based UV light emitters and power electronic devices. In this review, we focus on the unique physical properties of graded AlGaN alloys and highlight the key roles that such graded structures play in device exploration. Firstly, we elaborate on the underlying mechanisms of efficient carrier generation and transport manipulation enabled by graded AlGaN alloys. Thereafter, we comprehensively summarize and discuss the recent progress in UV light emitters and power electronic devices incorporating graded AlGaN structures. Finally, we outline the prospects associated with the implementation of graded AlGaN alloys in the pursuit of high-performance optoelectronic and power electronic devices.
In this work, we demonstrate a high-performance ultraviolet phototransistor (UVPT) based on the AlGaN/GaN high-electron mobility transistor (HEMT) configuration. When the device is biased at off state, the peak photoresponsivity (R) of 3.6 × 107 A/W under 265 nm illumination and 1.0 × 106 A/W under 365 nm illumination can be obtained. Those two R values are one of the highest among the reported UVPTs at the same detection wavelength under off-state conditions. In addition, we investigate the gate-bias (VGS) dependent photoresponse of the fabricated device with the assistance of band structure analysis. It was found that a more negative VGS can significantly reduce the rise/decay time for 265 nm detection, especially under weak illumination. This can be attributed to a largely enhanced electric field in the absorptive AlGaN barrier that pushes the photo-generated carriers rapidly into the GaN channel. In contrast, the VGS has little impact on the switching time for 365 nm photodetection, since the GaN channel has a larger absorption depth and the entire UVPT simply acts as a photoconductive-type device. In short, the proposed AlGaN/GaN HEMT structure with the superior photodetection performance paves the way for the development of next generation UVPTs.
Novel SP-WPU presents UV light and force dual-responsive properties in both dispersed state and solid state. The environmental friendly material provides an alternative to extend the application for smart coatings and textiles in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.