Cold exposure stress causes hypothermia, cognitive impairment, liver injury, and cardiovascular diseases, thereby increasing morbidity and mortality. Paradoxically, cold acclimation is believed to confer metabolic improvement to allow individuals to adapt to cold, harsh conditions and to protect them from cold stress-induced diseases. However, the therapeutic strategy to enhance cold acclimation remains less studied. Here, we demonstrate that the mitochondrial-derived peptide MOTS-c efficiently promotes cold adaptation. Following cold exposure, the improvement of adipose non-shivering thermogenesis facilitated cold adaptation. MOTS-c, a newly identified peptide, is secreted by mitochondria. In this study, we observed that the level of MOTS-c in serum decreased after cold stress. MOTS-c treatment enhanced cold tolerance and reduced lipid trafficking to the liver. In addition, MOTS-c dramatically upregulated brown adipose tissue (BAT) thermogenic gene expression and increased white fat “browning”. This effect might have been mediated by MOTS-c-activated phosphorylation of the ERK signaling pathway. The inhibition of ERK signaling disturbed the up-regulatory effect of MOTS-c on thermogenesis. In summary, our results indicate that MOTS-c treatment is a potential therapeutic strategy for defending against cold stress by increasing the adipose thermogenesis via the ERK pathway.
Trans-ferulic acid-4-β-glucoside (C16H20O9, TFA-4β-G) is a monomer extracted from the Chinese medicine called radix aconiti carmichaeli (Fuzi). To date, research on this substance is lacking. Here, we found that trans-ferulic acid-4-β-glucoside effectively promoted cold acclimatization in mice via increased heat production and alleviation of oxidative stress in a cold environment. Thus, our work indicates that ferulic acid-4-β-glucoside is a potential therapeutic candidate for prevention and treatment of cold stress injury.
Hypobaric hypoxia (HH) is a typical characteristic of high altitude environment and causes a spectrum of pathophysiological effects, including headaches, gliovascular dysfunction and cognitive slowing. Here, we sought to understand the mechanisms underlying cognitive deficits under HH exposure. Our results showed that HH exposure impaired cognitive function and suppressed dendritic spine density accompanied with increased neck length in both basal and apical hippocampal CA1 region neurons. The expression of PSD95, a critical synaptic scaffolding molecule, is down-regulated by hypoxia exposure and post-transcriptionally controlled by cold-inducible RNA-binding protein (Cirbp) through 3’-UTR region binding. PSD95 expressing alleviates hypoxia-induced neuron dendritic spine plasticity abnormality and memory impairment. Moreover, overexpressed Cirbp in hippocampus rescues hypoxia-induced loss of PSD95 and attenuates hypoxia-induced dendritic spine injury and cognitive outcomes. Thus, our findings reveal a novel mechanism where Cirbp-PSD-95 axis appears to play a key role in hypoxia-induced cognitive abilities impairment in brain.
Hypobaric hypoxia (HH) is a typical characteristic of high altitude environment and causes a spectrum of pathophysiological effects, including headaches, gliovascular dysfunction and cognitive retardation. Here, we sought to understand the mechanisms underlying cognitive deficits under HH exposure. Our results showed that hypobaric hypoxia exposure impaired cognitive function and suppressed dendritic spine density accompanied with increased neck length in both basal and apical hippocampal CA1 region neurons in mice. The expression of PSD95, a vital synaptic scaffolding molecule, is down-regulated by hypobaric hypoxia exposure and post-transcriptionally regulated by cold-inducible RNA-binding protein (Cirbp) through 3′-UTR region binding. PSD95 expressing alleviates hypoxia-induced dendritic spine morphology changes of hippocampal neurons and memory deterioration. Moreover, overexpressed Cirbp in hippocampus rescues HH-induced abnormal expression of PSD95 and attenuates hypoxia-induced dendritic spine injury and cognitive retardation. Thus, our findings reveal a novel mechanism that Cirbp-PSD-95 axis appears to play an essential role in HH-induced cognitive dysfunction in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.