Transcriptional corepressors are frequently aberrantly over-expressed in prostate cancers. However, their crosstalk with the Androgen receptor (AR), a key player in prostate cancer development, is unclear. Using ChIP-Seq, we generated extensive global binding maps of AR, ERG, and commonly over-expressed transcriptional corepressors including HDAC1, HDAC2, HDAC3, and EZH2 in prostate cancer cells. Surprisingly, our results revealed that ERG, HDACs, and EZH2 are directly involved in androgen-regulated transcription and wired into an AR centric transcriptional network via a spectrum of distal enhancers and/or proximal promoters. Moreover, we showed that similar to ERG, these corepressors function to mediate repression of AR-induced transcription including cytoskeletal genes that promote epithelial differentiation and inhibit metastasis. Specifically, we demonstrated that the direct suppression of Vinculin expression by ERG, EZH2, and HDACs leads to enhanced invasiveness of prostate cancer cells. Taken together, our results highlight a novel mechanism by which, ERG working together with oncogenic corepressors including HDACs and the polycomb protein, EZH2, could impede epithelial differentiation and contribute to prostate cancer progression, through directly modulating the transcriptional output of AR.
Graphical AbstractHighlights d HSC size and protein synthesis rate increase upon depletion of PRMT5 activity d PRMT5 depletion leads to AKT/mTOR activation, which partly contributes to HSC loss d PRMT5 activity is required for splicing of DNA repair genes in multiple cell types d PRMT5 KO or inhibition causes oxidative DNA damage that triggers p53-induced apoptosis SUMMARY Protein arginine methyltransferase 5 (PRMT5) is essential for hematopoiesis, while PRMT5 inhibition remains a promising therapeutic strategy against various cancers. Here, we demonstrate that hematopoietic stem cell (HSC) quiescence and viability are severely perturbed upon PRMT5 depletion, which also increases HSC size, PI3K/AKT/mechanistic target of rapamycin (mTOR) pathway activity, and protein synthesis rate. We uncover a critical role for PRMT5 in maintaining HSC genomic integrity by modulating splicing of genes involved in DNA repair. We found that reducing PRMT5 activity upregulates exon skipping and intron retention events that impair gene expression. Genes across multiple DNA repair pathways are affected, several of which mediate interstrand crosslink repair and homologous recombination. Consequently, loss of PRMT5 activity leads to endogenous DNA damage that triggers p53 activation, induces apoptosis, and culminates in rapid HSC exhaustion, which is significantly delayed by p53 depletion. Collectively, these findings establish the importance of cell-intrinsic PRMT5 activity in HSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.