While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI “nurse” for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.
The ability of aurones to modulate the efflux activities of ABCG2 and ABCB1 was investigated by quantifying their effects on the accumulation of pheophorbide A (PhA) in ABCG2-overexpressing MDA-MB-231/R cells and calcein AM in ABCB1-overexpressing MDCKII/MDR1 cells. Key structural features for interactions at both ABCG2 and ABCB1 are a methoxylated ring A, an intact exocyclic double bond, and the location of the carbonyl bond on ring C. Modifications on rings B and C were less critical and served primarily to moderate activity and selectivity for one or both transporters. These SAR trends were quantified by Free-Wilson analyses and are reflected in a pharmacophore model for PhA accumulation. Several compounds were found to be equipotent with fumitremorgin C (FTC) in promoting PhA accumulation, and they also demonstrated strong affinities for ABCB1. These compounds were disubstituted on ring B with methoxy or a combination of methoxy and hydroxy groups. Taken together, our findings highlight the versatility of the aurone template as a lead scaffold for the design of dual-targeting ABCG2 and ABCB1 modulators.
Nanoplastics are persistent pollutants that can cause severe toxicity to mammals. To date, no technology could simultaneously capture nanoplastic chemical and morphological information while conducting quantitative detection. Surface-enhanced Raman spectroscopy...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.