Group-based sparse representation (GSR) uses image nonlocal self-similarity (NSS) prior to grouping similar image patches, and then performs sparse representation. However, the traditional GSR model restores the image by training degraded images, which leads to the inevitable over-fitting of the data in the training model, resulting in poor image restoration results. In this paper, we propose a new hybrid sparse representation model (HSR) for image restoration. The proposed HSR model is improved in two aspects. On the one hand, the proposed HSR model exploits the NSS priors of both degraded images and external image datasets, making the model complementary in feature space and the plane. On the other hand, we introduce a joint sparse representation model to make better use of local sparsity and NSS characteristics of the images. This joint model integrates the patch-based sparse representation (PSR) model and GSR model, while retaining the advantages of the GSR model and the PSR model, so that the sparse representation model is unified. Extensive experimental results show that the proposed hybrid model outperforms several existing image recovery algorithms in both objective and subjective evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.