Climatic extremes have adverse concurrent and lagged effects on terrestrial carbon cycles. Here, a concurrent effect refers to the occurrence of a latent impact during climate extremes, and a lagged effect appears sometime thereafter. Nevertheless, the uncertainties of these extreme drought effects on net carbon uptake and the recovery processes of vegetation in different Tibetan Plateau (TP) ecosystems are poorly understood. In this study, we calculated the Standardised Precipitation–Evapotranspiration Index (SPEI) based on meteorological datasets with an improved spatial resolution, and we adopted the Carnegie–Ames–Stanford approach model to develop a net primary production (NPP) dataset based on multiple datasets across the TP during 1982–2015. On this basis, we quantised the net reduction in vegetation carbon uptake (NRVCU) on the TP, investigated the spatiotemporal variability of the NPP, NRVCU and SPEI, and analysed the NRVCUs that are caused by the concurrent and lagged effects of extreme drought and the recovery times in different ecosystems. According to our results, the Qaidam Basin and most forest regions possessed a significant trend towards drought during 1982–2015 (with Slope of SPEI < 0, P < 0.05), and the highest frequency of extreme drought events was principally distributed in the Qaidam Basin, with three to six events. The annual total net reduction in vegetation carbon uptake on the TP experienced a significant downward trend from 1982 to 2015 (−0.0018 ± 0.0002 PgC year−1, P < 0.001), which was negatively correlated with annual total precipitation and annual mean temperature (P < 0.05). In spatial scale, the NRVCU decrement was widely spread (approximately 55% of grids) with 17.86% of the area displaying significant declining trends (P < 0.05), and the sharpest declining trend (Slope ≤ −2) was mainly concentrated in southeastern TP. For the alpine steppe and alpine meadow ecosystems, the concurrent and lagged effects of extreme drought induced a significant difference in NRVCU (P < 0.05), while forests presented the opposite results. The recovery time comparisons from extreme drought suggest that forests require more time (27.62% of grids ≥ 6 years) to recover their net carbon uptakes compared to grasslands. Therefore, our results emphasise that extreme drought events have stronger lagged effects on forests than on grasslands on the TP. The improved resilience of forests in coping with extreme drought should also be considered in future research.
Flash floods are one of the most serious natural disasters, and have a significant impact on economic development. In this study, we employed the spatiotemporal analysis method to measure the spatial–temporal distribution of flash floods and examined the relationship between flash floods and driving factors in different subregions of landcover. Furthermore, we analyzed the response of flash floods on the economic development by sensitivity analysis. The results indicated that the number of flash floods occurring annually increased gradually from 1949 to 2015, and regions with a high quantity of flash floods were concentrated in Zhaotong, Qujing, Kunming, Yuxi, Chuxiong, Dali, and Baoshan. Specifically, precipitation and elevation had a more significant effect on flash floods in the settlement than in other subregions, with a high r (Pearson’s correlation coefficient) value of 0.675, 0.674, 0.593, 0.519, and 0.395 for the 10 min precipitation in 20-year return period, elevation, 60 min precipitation in 20-year return period, 24 h precipitation in 20-year return period, and 6 h precipitation in 20-year return period, respectively. The sensitivity analysis showed that the Kunming had the highest sensitivity (S = 21.86) during 2000–2005. Based on the research results, we should focus on heavy precipitation events for flash flood prevention and forecasting in the short term; but human activities and ecosystem vulnerability should be controlled over the long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.