for the Nasal Oscillation Post-Extubation (NASONE) Study Group IMPORTANCE Several respiratory support techniques are available to minimize the use of invasive mechanical ventilation (IMV) in preterm neonates. It is unknown whether noninvasive high-frequency oscillatory ventilation (NHFOV) is more efficacious than nasal continuous positive airway pressure (NCPAP) or nasal intermittent positive pressure ventilation (NIPPV) in preterm neonates after their first extubation.OBJECTIVE To test the hypothesis that NHFOV is more efficacious than NCPAP or NIPPV in reducing IMV after extubation and until neonatal intensive care unit discharge among preterm neonates. DESIGN, SETTING, AND PARTICIPANTSThis multicenter, pathophysiology-based, assessor-blinded, 3-group, randomized clinical trial was conducted in 69 tertiary referral neonatal intensive care units in China, recruiting participants from December 1, 2017, to May 31, 2021. Preterm neonates who were between the gestational age of 25 weeks plus 0 days and 32 weeks plus 6 days and were ready to be extubated were randomized to receive NCPAP, NIPPV or NHFOV. Data were analyzed on an intention-to-treat basis. INTERVENTIONSThe NCPAP, NIPPV, or NHFOV treatment was initiated after the first extubation and lasted until discharge.MAIN OUTCOMES AND MEASURES Primary outcomes were total duration of IMV, need for reintubation, and ventilator-free days. These outcomes were chosen to describe the effect of noninvasive ventilation strategy on the general need for IMV.RESULTS A total of 1440 neonates (mean [SD] age at birth, 29.4 [1.8] weeks; 860 boys [59.7%]) were included in the trial. Duration of IMV was longer in NIPPV (mean difference, 1.2; 95% CI, 0.01-2.3 days; P = .04) and NCPAP (mean difference, 1.5 days; 95% CI, 0.3-2.7 days; P = .01) compared with NHFOV. Neonates who were treated with NCPAP needed reintubations more often than those who were treated with NIPPV (risk difference: 8.1%; 95% CI, 2.9%-13.3%; P = .003) and NHFOV (risk difference, 12.5%; 95% CI, 7.5%-17.4%; P < .001). There were fewer ventilator-free days in neonates treated with NCPAP than in those treated with NIPPV (median [25th-75th percentile] difference, −3 [−6 to −1] days; P = .01). There were no differences between secondary efficacy or safety outcomes, except for the use of postnatal corticosteroids (lower in NHFOV than in NCPAP group; risk difference, 7.3%; 95% CI, 2.6%-12%; P = .002), weekly weight gain (higher in NHFOV than in NCPAP group; mean difference, −0.9 g/d; 95% CI, −1.8 to 0 g/d; P = .04), and duration of study intervention (shorter in NHFOV than in NIPPV group; median [25th-75th percentile] difference, −1 [−3 to 0] days; P = .01).CONCLUSIONS AND RELEVANCE Results of this trial indicated that NHFOV, if used after extubation and until discharge, slightly reduced the duration of IMV in preterm neonates, and both NHFOV and NIPPV resulted in a lower risk of reintubation than NCPAP. All 3 respiratory support techniques were equally safe for this patient population.
IntroductionEstablishing the reference interval for pulse oxygen saturation (SpO2) is essential for sensitively identifying neonatal hypoxaemia due to various causes. However, the reference interval for high altitudes has not yet been established, and existing studies have many limitations. This study will aim to establish the reference interval for various high altitudes and determine whether preductal and postductal measurements at the same altitude vary.Methods and analysisThis is a multicentre, open, cross-sectional study, which will begin in February 2022. Approximately 2000 healthy full-term singleton neonates will be recruited from six hospitals (altitude ≥2000 m) in Qinghai Province, China. The participating hospitals will use a uniform pulse oximeter type. The measurements will be performed between 24 hours after birth and discharge. During the measurement, the neonate will be awake and quiet. Preductal and postductal measurements will be performed. The measurement time, site and results will be recorded and input, along with the collected basic information, into the perinatal cloud database. We will carry out strict quality control for basic information collection, measurement and data filing. We will perform descriptive statistics on the distribution range of the collected data, determine the lower limit value of the reference interval for each hospital and the corresponding altitude, perform curve fitting for the lower limit value, use the altitude as a covariate for the function corresponding to the fitted curve, establish the prediction equation and ultimately determine the reference intervals of each high altitude location.Ethics and disseminationOur protocol has been approved by the Medical Ethics Committee of all participating hospitals. We will publish our study results in academic conferences and peer-reviewed public journals.Trial registration numberNCT05115721.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.