SUMMARYThe problem of delay-dependent robust stabilization for uncertain singular discrete-time systems with Markovian jumping parameters and time-varying delay is investigated. In terms of free-weighting-matrix approach and linear matrix inequalities, a delay-dependent condition is presented to ensure a singular discrete-time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state-feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach.
Launched on 5 June 2019, the BuFeng-1 A/B twin satellites were part of the first Chinese global navigation satellite system reflectometry (GNSS-R) satellite mission. In this letter, a brief introduction of the BF-1 mission and its preliminary results of sea surface wind retrieval are presented. Empirical fully developed sea (FDS) geophysical model functions (GMFs) relating the normalized bistatic radar cross-section to the sea surface wind speed are proposed for the BF-1 GNSS-R instruments. The FDS GMFs are derived from the collocated BF-1 observations, the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data, and the advanced scatterometer (ASCAT) satellite observations. The preliminary tests reveal that the root-mean-square error (RMSE) between the derived wind speed and the reanalysis is 2.63 m/s for wind speeds in the range of 0.5–40.5 m/s. Further comparisons with the ASCAT observations and mooring buoys show that the RMSEs are 2.04 m/s and 1.77 m/s, respectively, at low-to-moderate wind speeds. This study demonstrates the effectiveness of BF-1 and provides a basis for the future GMF development of the BF-1 A/B mission.
In this paper, a novel method for constructing the end-to-end calibration matrix of the fully polarimetric radiometer is proposed. In this method, the fully polarimetric radiometer is divided into two independent systems, the antenna system and the receiver system. Construct the local transfer matrix equations of the two parts respectively, and make them combined, then the end-to-end calibration matrix of the fully polarimetric radiometer could be obtained. The transfer matrix of the antenna system could be given in the form of analytical expression, and the transfer matrix of the receiver system could be obtained by a local calibration using the correlated noise calibration standard (CNCS). The end-to-end calibration matrix obtained by this method, is an effective complement and validated to the one obtained by the traditional global calibration method. Meanwhile, in this method, the complicated calibration source is not needed, so the calibration cost could be reduced effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.