We in this paper study the generation of primordial magnetic field (PMF) in the non-singular bouncing scenario, through the coupling of the electromagnetic field to gravity. We adopt an electrodynamic model with a coupling coefficient as a function of the scale factor a, i.e. f = 1 + (a/a ) −n , with a and n > 0 being constants. The result implies that in this mechanism, the power spectrum of PMF today is always blue tilted on large scales from 1 Mpc to the Hubble length, and the observational constraints favor the ekpyrotic-bounce scenario. Furthermore, the back reaction of the energy density of PMF at the bouncing point yields theoretical constraints on the bouncing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.