Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.
Introducing structural defects such as vacancies, nanoprecipitates, and dislocations is a proven means of reducing lattice thermal conductivity. However, these defects tend to be detrimental to carrier mobility. Consequently, the overall effects for enhancing ZT are often compromised. Indeed, developing strategies allowing for strong phonon scattering and high carrier mobility at the same time is a prime task in thermoelectrics. Here we present a high-performance thermoelectric system of Pb(Sb□)SeTe (□ = vacancy; y = 0-0.4) embedded with unique defect architecture. Given the mean free paths of phonons and electrons, we rationally integrate multiple defects that involve point defects, vacancy-driven dense dislocations, and Te-induced nanoprecipitates with different sizes and mass fluctuations. They collectively scatter thermal phonons in a wide range of frequencies to give lattice thermal conductivity of ∼0.4 W m K, which approaches to the amorphous limit. Remarkably, Te alloying increases a density of nanoprecipitates that affect mobility negligibly and impede phonons significantly, and it also decreases a density of dislocations that scatter both electrons and phonons heavily. As y is increased to 0.4, electron mobility is enhanced and lattice thermal conductivity is decreased simultaneously. As a result, Pb(Sb□)SeTe exhibits the highest ZT ∼ 1.5 at 823 K, which is attributed to the markedly enhanced power factor and reduced lattice thermal conductivity, in comparison with a ZT ∼ 0.9 for Pb(Sb□)Se that contains heavy dislocations only. These results highlight the potential of defect engineering to modulate electrical and thermal transport properties independently. We also reveal the defect formation mechanisms for dislocations and nanoprecipitates embedded in Pb(Sb□)SeTe by atomic resolution spherical aberration-corrected scanning transmission electron microscopy.
From a structural and economic perspective, tellurium-free PbSe can be an attractive alternative to its more expensive isostructural analogue of PbTe for intermediate temperature power generation. Here we report that PbSe0.998Br0.002-2%Cu2Se exhibits record high peak ZT 1.8 at 723 K and average ZT 1.1 between 300 and 823 K to date for all previously reported n- and p-type PbSe-based materials as well as tellurium-free n-type polycrystalline materials. These even rival the highest reported values for n-type PbTe-based materials. Cu2Se doping not only enhance charge transport properties but also depress thermal conductivity of n-type PbSe. It flattens the edge of the conduction band of PbSe, increases the effective mass of charge carriers, and enlarges the energy band gap, which collectively improve the Seebeck coefficient markedly. This is the first example of manipulating the electronic conduction band to enhance the thermoelectric properties of n-type PbSe. Concurrently, Cu2Se increases the carrier concentration with nearly no loss in carrier mobility, even increasing the electrical conductivity above ∼423 K. The resulting power factor is ultrahigh, reaching ∼21–26 μW cm–1 K–2 over a wide range of temperature from ∼423 to 723 K. Cu2Se doping substantially reduces the lattice thermal conductivity to ∼0.4 W m–1 K–1 at 773 K, approaching its theoretical amorphous limit. According to first-principles calculations, the achieved ultralow value can be attributed to remarkable acoustic phonon softening at the low-frequency region.
Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a soughtafter goal. Here, we report new n-type thermoelectric system Cu x PbSe 0.99 Te 0.01 (x = 0.0025, 0.004, and 0.005) exhibiting recordhigh average ZT ∼ 1.3 over 400−773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu 0.005 PbSe 0.99 Te 0.01 attains an exceptionally high average power factor of ∼27 μW cm −1 K −2 from 400 to 773 K with a maximum of ∼30 μW cm −1 K −2 at 300 K, the highest among all n-and p-type PbSe-based materials. Its ∼23 μW cm −1 K −2 at 773 K is even higher than ∼21 μW cm −1 K −2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm −1 K −1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu 0.005 PbSe 0.99 Te 0.01 to ∼1.7 at 773 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.