Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs.
A series of star-shaped octupolar triazatruxenes (TATs, 1-6) with intramolecular "push-pull" structure were synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effect, i.e., significant bathochromic shift of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to photoinduced intramolecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by two-photon excited fluorescence (2PEF) measurements in toluene and THF. These chromophores exhibited large two-photon absorption cross-sections ranging from 280 to 1620 GM in the near-infrared (NIR) region. Compound 6 showed the largest 2PA action cross-section (σ(2)Φ) of 564 GM and could be a potential two-photon fluorescent (2PF) probe. In addition, compounds 1-6 all displayed good thermal stability and photostability.
N-Annulated perylene fused porphyrins 1 and 2 were synthesized by oxidative dehydrogenation using a Sc(OTf)(3)/DDQ system. These newly synthesized hybrid molecules are highly soluble in organic solvents and exhibit remarkably intense near-IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.