The named entity recognition based on the epidemiological investigation of information on COVID-19 can help analyze the source and route of transmission of the epidemic to control the spread of the epidemic better. Therefore, this paper proposes a Chinese named entity recognition model BERT-BiLSTM-IDCNN-ELU-CRF (BBIEC) based on the epidemiological investigation of information on COVID-19 of the BERT pre-training model. The model first processes the unlabeled epidemiological investigation of information on COVID-19 into the character-level corpus and annotates it with artificial entities according to the BIOES character-level labeling system and then uses the BERT pre-training model to obtain the word vector with position information; then, through the bidirectional long-short term memory neural network (BiLSTM) and the improved iterated dilated convolutional neural network (IDCNN) extract global context and local features from the generated word vectors and concatenate them serially; output all possible label sequences to the conditional random field (CRF); finally pass the condition random The airport decodes and generates the entity tag sequence. The experimental results show that the model is better than other traditional models in recognizing the entity of the epidemiological investigation of information on COVID-19.INDEX TERMS chinese named entity recognition,the epidemiological investigation of information on COVID-19,bidirectional encoder representations from transformer, bidirectional long-short term memory network, iterated dilated convolutional neural network, conditional random field
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.