This study aims to optimize the distributions of groove textures in a journal bearing to reduce its friction coefficient. Firstly, A lubrication model of a groove textured journal bearing is established, and the finite difference and overrelaxation iterative methods are used to numerically solve the model. Then, the friction coefficient is adopted as the fitness function and the groove lengths are optimized by particle swarm optimization (PSO) algorithm to evolve the optimal distributions. Furthermore, the effects of eccentricity ratios and rotary speeds on optimal distributions of groove textures are also discussed. The numerical results show the optimal distributions of groove textures are like trapeziums under different eccentricity ratios and rotary speeds, and the trapeziums become slenderer with increasing of eccentricity ratios. It is also found that the reductions of friction coefficients by optimal groove textures are more significant under lower eccentricity ratios. Briefly, this study may provide guidance on surface texture design to improve the tribological performance of journal bearings.
The bushing profiles have important effects on the performance of journal bearing. In this article, the effects of plain profile, double conical profile, and double parabolic profile on the elastohydrodynamic lubrication of the journal bearing under steady operating conditions are investigated. The journal misalignment and asperity contact between journal and bushing surface are considered, while the modification of the bushing profiles due to running-in is neglected. Finite element method is used for the elastic deformation of bushing surface, while the numerical solution is established by using finite difference method and overrelaxation iterative method. The numerical results reveal that the double parabolic profile with appropriate size can significantly increase the minimum film thickness and reduce the asperity contact pressure and friction, while the maximum film pressure, load-carrying capacity, and leakage flow rate change slightly under steady operating conditions. This study may help to reduce the edge wear and prolong the service life of the journal bearing.
The textures on the bushing surface have important effects on the performance of journal bearing. In this study, the effects of double parabolic profiles with groove textures on the hydrodynamic lubrication performance of journal bearing under steady operating conditions are investigated theoretically. The journal misalignment, asperity contact and thermal effects are considered, while the profile modifications due to running-in are neglected. The Winkler/Column model is used to calculate the elastic deformation of bushing surface and the adiabatic flow hypothesis is adopted to obtain the effective temperature of lubricating oil. The numerical solution is established by using finite difference and overrelaxation iterative methods, and the rupture zone of oil film is determined by Reynolds boundary conditions. The numerical results reveal that the double parabolic profiles with groove textures with proper location and geometric sizes can increase load carrying capacity and reduce friction loss under steady operating conditions, which effectively overcome the drawbacks of double parabolic profiles. This novel bushing profile may help to reduce the bushing edge wear and enhance the lubrication performance of journal bearing.
The double parabolic profiles can help journal bearing to reduce bushing edge wear, but it also reduces load carrying capacity and increases friction loss. To overcome these drawbacks, in this study, a multiobjective optimization of journal bearing with double parabolic profiles and groove textures is researched under steady operating conditions using Taguchi and grey relational analysis methods. Firstly, a lubrication model with journal misalignment, elastic deformation, asperity contact, thermal effect is established and formation cause of drawbacks is illustrated. Then, an orthogonal test with considering six factors, i.e., groove number, groove depth, groove length, axial width of double parabolic profiles, radial height of double parabolic profiles and groove location is conducted, meanwhile the effects and significances of each factor on response variables are revealed. Finally, an optimal parameters combination of six factors is determined by grey relational analysis, which gives maximum load carrying capacity and minimum friction loss. Overall, this study may give guidance on journal bearing design to enhance its tribological performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.