Accelerated pavement testing (APT) is an effective method to study the long-term performance of pavement. Therefore, the dynamic strain behavior analysis of asphalt pavement has important guiding significance in the study of pavement failure modes. To explore the dynamic response of a high-content plant-mixed hot-reclaimed asphalt mixture under a dynamic load of vehicles, a full-scale test road was paved, and ALT biaxial accelerated loading test equipment was used to simulate the dynamic loads of vehicles. Based on parameters such as axle load, temperature, speed, and loading times, the development law for the bottom strain of the three pavement structures was analyzed. The test results show that the most unfavorable position of the asphalt pavement load is located just below the centerline of the wheel track on one side, and the damage effect of a single double-axle wheel load is far greater than that of two single-axle wheel loads. Then, the longitudinal tensile strain of the pavement bottom always maintains the alternating state of compression-tension and compression. The longitudinal tensile strain of the pavement bottom is larger than the transverse tensile strain, and transverse fatigue cracks appear first. Under normal temperature conditions, the bottom tensile strains of the three composite pavement structures under different axial loads are close, and the pavement performance of the hot-recycled asphalt pavement of structure A and structure B can meet the specification requirements. The relationship between the bottom strain and axle load is nonlinear and is directly related to the tire ground pressure, and the difference in the tensile and compressive strain values of the bottom of the three composite pavement structures is small. Under high temperature conditions, the bottom layer temperature of structure A and structure B is lower than that of structure C, and the thermal heat transfer efficiency of hot-recycled asphalt pavement is lower than that of ordinary asphalt pavement. Additionally, the longitudinal tensile strain is about 1–1.5 times that of the transverse tensile strain. Based on the Boltzmann function, the accumulative tensile strain prediction model was established to reflect the relationship between the cumulative strain at the bottom and the number of loads.
To solve the problem that waste oil residues cannot be utilized and to reuse the aged asphalt, suitable modifiers were selected to compound the aged asphalt with waste oil residues to study its performance. SBS/REOB modified-rejuvenated asphalt was prepared by a high-speed shearing mechanism with aged asphalt, Recycled Engine Oil Bottom (REOB), Styrenic Block Copolymers (SBS) modifier, and stabilizer. The effects of SBS content, REOB content, shear time, and shear rate on the conventional physical properties of asphalt were studied by orthogonal grey correlation analysis, and the optimum preparation scheme of SBS/REOB modified-rejuvenated asphalt was determined. The high and low temperature rheological properties of SBS/REOB modified-rejuvenated asphalt were studied using the Multiple Stress Creep Recover (MSCR) test and bending beam rheological (BBR) test. The mechanism of SBS/REOB on the modification and regeneration of aged asphalt was explored through four component tests and Fourier transforms infrared spectroscopy. The results show that the optimum preparation scheme is 4.5% SBS dosage, 9% REOB dosage, 50 min~60 min shear time, and 4500 r/min shear rate. The addition of SBS improves the elastic recovery performance and high temperature deformation resistance of REOB rejuvenated asphalt. At the same time, the S-value decreases and the m-value increases, which significantly improves the low temperature cracking resistance of REOB rejuvenated asphalt. The addition of REOB achieves component blending and regeneration of aged asphalt by supplementing the light components. After the addition of SBS absorbs the light component and swelling reaction occurs, the whole modification-regeneration process is mainly physical co-mixing and co-compatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.