A variable selection method based on probabilistic principal component analysis (PCA) using penalized likelihood method is proposed. The proposed method is a two-step variable reduction method. The first step is based on the probabilistic principal component idea to identify principle components. The penalty function is used to identify important variables in each component. We then build a model on the original data space instead of building on the rotated data space through latent variables (principal components) because the proposed method achieves the goal of dimension reduction through identifying important observed variables. Consequently, the proposed method is of more practical use. The proposed estimators perform as the oracle procedure and are root-n consistent with a proper choice of regularization parameters. The proposed method can be successfully applied to high-dimensional PCA problems with a relatively large portion of irrelevant variables included in the data set. It is straightforward to extend our likelihood method in handling problems with missing observations using EM algorithms. Further, it could be effectively applied in cases where some data vectors exhibit one or more missing values at random.
Quasi-Monte Carlo method is known to have lower convergence rate than the standard Monte Carlo method. Quasi-Monte Carlo methods are using low discrepancy sequences as quasi-random numbers. They include Halton sequence, Faure sequence, and Sobol sequence. In this article, we compared standard Monte Carlo method, quasiMonte Carlo methods and three scrambling methods of Owen, Faure-Tezuka, OwenFaure-Tezuka in valuation of multi-asset European call option through simulations. Moro inversion method is used in generating random numbers from normal distribution. It has been shown that three scrambling methods are superior in estimating option prices regardless of the number of assets, volatility, and correlations between assets. However, there are no big differences between them.
This paper proposes a method for sufficient dimension reduction (SDR) of mixture data. We consider mixture data containing more than one component that have distinct central subspaces. We adopt an approach of a modelbased sliced inverse regression (MSIR) to the mixture data in a simple and intuitive manner. We employed mixture probabilistic principal component analysis (MPPCA) to estimate each central subspaces and cluster the data points. The results from simulation studies and a real data set show that our method is satisfactory to catch appropriate central spaces and is also robust regardless of the number of slices chosen. Discussions about root selection, estimation accuracy, and classification with initial value issues of MPPCA and its related simulation results are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.