Approximately 3 billion people were unable to afford a healthy diet in 2019 because of poverty and inequality. Most of these people live in Asia and Africa. Furthermore, 30% of the world population was affected by moderate to severe food insecurity in 2020, and most of this population lives in low- and middle-income countries. The world is at a critical juncture, and there is an urgent need for transformative food systems that ensure the empowerment of poor and vulnerable population groups, often smallholders with limited access to resources or those living in remote locations, as well as the empowerment of women, children, and youth (FAO, 2018). The backyard poultry production system (BPPS), as practiced by 80% of the world's rural population, can be that transformative change in low- and middle-income countries. Although the BPPS has low productivity, it still plays an important role in the food and nutritional security of rural people living in fragile ecosystems. Backyard poultry has been recognized as a tool for poverty alleviation and women empowerment besides ensuring food and nutritional security for rural poor. Poultry meat and eggs are the cheapest and best source of good quality protein, minerals, and vitamins. The introduction of improved backyard poultry germplasm has improved the productivity of this system in resource-poor settings and thereby improved the income and nutritional security of poor households. With these birds, the availability, access, utilization, and stability of food security have improved at household and national levels. Diseases, predation, non-availability of improved germplasm, lack of access to markets, and lack of skills are the major constraints to the adoption of improved backyard poultry. These constraints can be addressed by involving a network of community animal service providers. The improved backyard poultry germplasm will dominate the backyard poultry production system in the future and will be a tool for ensuring food and nutritional security on a sustainable basis, more particularly in low- and middle-income countries.
Oxidative stress is the major cause of many health conditions, and regular consumption of antioxidants helped to encounter and prevent such oxidative stress-related diseases. Due to safety concerns over long-term uses of synthetic antioxidants, natural antioxidants are more preferred. The purpose of this study is to investigate the antioxidant and anticancer activities of Jussiaea repens L., a wild edible flora found in Manipur, India. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) assay and DNA-nicking assay. The anticancer activity was tested using five cancer lines viz., SKOV3 cells (ovarian), HeLa (cervical), MDA-MB-231 (breast), PANC-1 (pancreatic), and PC3 (prostate). The toxicity, developmental effect, antiproliferative activity was further tested using zebrafish embryos. The methanolic plant extract had higher polyphenol content than flavonoids. The in vitro study demonstrated a promising antioxidant capacity and DNA protection ability of this plant. The extract also showed cytotoxic activity against SKOV3, HeLa, MDA-MB-23, and PANC-1 cancer cell lines. The in vivo studies on zebrafish embryos demonstrated the extract’s ability to suppress the developmental process and elicited more cytotoxicity to cancer cells than developing zebrafish embryos. Moreover, the in vivo studies on zebrafish embryos also indicated the antiproliferative activity of J. repens L. extract.
Persicaria sagittata L. (common name Arrowleaf tearthumb, American) is an herbaceous edible plant with characteristics sessile leaves mainly found in wetland areas of North America and Eastern Asia.In Eastern Himalayan Region of India, the ethnic communities consumed this plant as vegetables. The present investigation suggests the plant is endowed with bioactive compounds having potential DNA protection ability and antihyperglycemic activity. The DNA nicking assay revealed that the methanolic extract of this plant has the potential to protect plasmid DNA against hydroxyl damage. The α-glucosidase and α-amylase inhibitory assay of this methanolic extract suggest more effectiveness in inhibition of α-amylase than the α-glucosidase. Further, proximate composition, micronutrient, total phenolic and flavonoid content of this underutilized aquatic plant was determined.And lastly the in-vivo cytotoxicity study of Persicaria sagittata L. plant extract suggest that the plant is less toxic to in-vivo system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.