We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and an output coupling FBG of narrow reflection bandwidth. The amplifier stage adopted counter pumping. By optimizing the seed and amplifier properties, an output laser power of 2276 W was obtained with a slope efficiency of 80.3%, a 3 dB linewidth of 0.54 nm and a signal to Raman ratio of 32 dB, however, the transverse mode instability (TMI) began to occur. For further increasing the laser power, a high-power chirped and tilted FBG (CTFBG) was inserted between the backward combiner and the output passive fiber, experimental results showed that both the threshold of Stimulated Raman scattering (SRS) and TMI increased. The maximum laser power was improved to 2576 W with a signal to Raman ratio of 42 dB, a slope efficiency of 77.1%, and a 3 dB linewidth of 0.87 nm. No TMI was observed and the beam quality factor M2 maintained about 1.6. This work could provide a useful reference for obtaining narrow-linewidth high-power fiber lasers with high signal to Raman ratio.
In this paper, we have experimentally demonstrated a 4.45 kW master oscillator power amplification (MOPA) narrowlinewidth fiber laser based on fiber Bragg grating (FBG) with near-diffraction limited beam quality. By optimizing the structure of narrow linewidth fiber oscillator seed, the temporal characteristics of injected seed laser is improved. Combined with optimizing pumping ratio of amplifier stage, multiple nonlinear effects are mitigated. Finally, a 4.45 kW narrow linewidth laser output with near-diffraction limited beam quality is achieved with a slope efficiency of 80.2%. The signal to noise ratio is 24.5 dB at the maximum power. The 3 dB and 20 dB bandwidth are 0.5 nm and 3.63 nm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.