The mobile edge computing (MEC) paradigm provides a promising solution to solve the resource-insufficiency problem in mobile terminals by offloading computation-intensive and delay-sensitive tasks to nearby edge nodes. However, limited computation resources in edge nodes may not be sufficient to serve excessive offloading tasks exceeding the computation capacities of edge nodes. Therefore, multiple edge clouds with a complementary central cloud coordinated to serve users is the efficient architecture to satisfy users’ Quality-of-Service (QoS) requirements while trying to minimize some network service providers’ cost. We study a dynamic, decentralized resource-allocation strategy based on evolutionary game theory to deal with task offloading to multiple heterogeneous edge nodes and central clouds among multi-users. In our strategy, the resource competition among multi-users is modeled by the process of replicator dynamics. During the process, our strategy can achieve one evolutionary equilibrium, meeting users’ QoS requirements under resource constraints of edge nodes. The stability and fairness of this strategy is also proved by mathematical analysis. Illustrative studies show the effectiveness of our proposed strategy, outperforming other alternative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.