In order to study the effect of tip clearance on the internal cavitation stability of a shunt blade inducer, an external characteristics experiment of a centrifugal pump with a shunt blade inducer was carried out. Based on the turbulence model and mixture model, the cavitating flow in a centrifugal pump with the inducer was numerically simulated. The influence of tip clearance on the cavitating flow in a shunt inducer was studied and analyzed. Through the research, it was found that tip clearance has a certain influence on the critical cavitation coefficient. The existence of the tip clearance caused a significant leakage vortex near the inducer’s inlet and a strong transient effect was shown. The location and degree of cavitation caused by the tip leakage are clarified in this paper. Tip clearance has a great impact on the pressure distribution on a shunt blade inducer. The influence law of tip clearance on an inducer’s blade load distribution was clarified. The results showed that tip clearance has a significant effect on the cavitation of a shunt blade inducer under low flow rate conditions.
The influence mechanism of the blade tip clearance (TC) of an inducer on the performance of a centrifugal pump at high speed was researched under different flow rate conditions in this work. An experiment on the pump’s external performance was carried out, and numerical calculation was also performed under four different TCs. The full characteristic performance curves, static pressure and pressure pulsation distributions of the pump were obtained. Through the research and analysis, it was found that the influence of the TC on the efficiency and the head of the centrifugal pump are related to the flow rate. Under the influence of a large flow rate, the increase in the TC is helpful to improve the efficiency and the head of the pump. The increase in the TC helps to weaken the gap jet effect on the inducer. The inlet jet of the inducer, caused by TC leakage, will form a low-pressure vortex zone at the inlet of the inducer. The splitter-bladed inducer’s pressure pulsation is affected by the TC. The peak pressure pulsation at the monitoring point at the short blades is larger than that at the long blades. With the increase in TC, the cavitation degree at the inlet of the long blade of the inducer is decreased, while the cavitation degree at the short blade is deepened. It is also found that the TC has little effect on the radial force of the inducer and the impeller. These results will provide the design basis for the tip clearance of an inducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.